

__

MACHINE LEARNING

NAME OF THE FACULTY Mrs. V. NIKITHA
YEAR: III
SUBJECT CODE PSIT303A
ACADEMIC YEAR 2022-2023
REGULATION R18

MACHINE LEARNING

B.Tech. III Year I Sem. L T P C

3 0 0 3

Prerequisites:

• Data Structures

• Knowledge on statistical methods

Course Objectives:

• This course explains machine learning techniques such as decision tree learning,

Bayesian

learning etc.

• To understand computational learning theory.

• To study the pattern comparison techniques.

Course Outcomes:

• Understand the concepts of computational intelligence like machine learning

• Ability to get the skill to apply machine learning techniques to address the real time

problems

in different areas

• Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and

issues in machine learning

Concept learning and the general to specific ordering – introduction, a concept learning task,

concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and

the candidate elimination algorithm, remarks on version spaces and candidate elimination,

inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for

decision tree learning, the basic decision tree learning algorithm, hypothesis space search in

decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II

Artificial Neural Networks-1– Introduction, neural network representation, appropriate

problems for neural network learning, perceptions, multilayer networks and the back-

propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative

example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling

theory, a general approach for deriving confidence intervals, difference in error of two

hypotheses, comparing learning algorithms.

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning,

Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for

predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs

algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief

networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct

hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite

hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, k-nearest neighbor algorithm, locally weighted

regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT- IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis

space search, genetic programming, models of evolution and learning, parallelizing genetic

algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets:

summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as

inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q–learning, non-deterministic,

rewards and actions, temporal difference learning, generalizing from examples, relationship to

dynamic programming.

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG,

remarks on explanation-based learning, explanation-based learning of search control

knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior

knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches

to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

Machine Learning – Tom M. Mitchell, - MGH

REFERENCE BOOK:

Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

Unit-I

Well Posed Problems:

Definition: A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.

Applications of Machine Learning

Learning to recognize spoken words. All of the most successful speech recognition systems

employ machine learning in some form. For example, the SPHINX system learns speaker- specific

strategies for recognizing the primitive sounds (phonemes) and words from the observed

speech signal. Neural network learning methods (e.g., Waibel et al. 1989) and methods for

learning hidden Markov models (e.g., Lee 1989) are effective for automatically customizing to,

individual speakers, vocabularies, microphone characteristics, background noise, etc. Similar

techniques have potential applications in many signal-interpretation problems.

Learning to drive an autonomous vehicle. Machine learning methods have been used to train

computer-controlled vehicles to steer correctly when driving on a variety of road types. For

example, the ALVINN system (Pomerleau 1989) has used its learned strategies to drive

unassisted at 70 miles per hour for 90 miles on public highways among other cars. Similar

techniques have possible applications in many sensor-based control problems.

Learning to classify new astronomical structures. Machine learning methods have been

applied to a variety of large databases to learn general regularities implicit in the data. For

example, decision tree learning algorithms have been used by NASA to learn how to classify

celestial objects from the second Palomar Observatory Sky Survey (Fayyad et al. 1995). This

system is now used to automatically classify all objects in the Sky Survey, which consists of three

terrabytes of image data.

Learning to play world-class backgammon. The most successful computer programs for playing

games such as backgammon are based on machine learning algorithms. For example,

the world's top computer program for backgammon, TD-GAMMON (Tesauro 1992, 1995).

learned its strategy by playing over one million practice games against itself. It now plays at a

level competitive with the human world champion. Similar techniques have applications in

many practical problems where very large search spaces must be examined efficiently.

A checkers learning problem:

Task T: playing checkers

Performance measure P: percent of games won against opponents

Training experience E: playing practice games against itself We can specify many learning

problems in this fashion, such as learning to recognize handwritten words, or learning to

drive a robotic automobile autonomously.

A handwriting recognition learning problem:

Task T: recognizing and classifying handwritten words within images

Performance measure P: percent of words correctly classified

Training experience E: a database of handwritten words with given classifications

A robot driving learning problem:

Task T: driving on public four-lane highways using vision sensors

Performance measure P: average distance travelled before an error (as judged by human

overseer)

Training experience E: a sequence of images and steering commands recorded while

observing a human driver.

Designing a Learning System:

Choosing the Training Experience:

The first design choice we face is to choose the type of training experience from which our

system will learn. The type of training experience available can have a significant impact on

success or failure of the learner. One key attribute is whether the training experience provides

direct or indirect feedback regarding the choices made by the performance system. For

example, in learning to play checkers, the system might learn from direct training examples

consisting of individual checkers board states and the correct move for each.

In order to complete the design of the learning system, we must now choose

1. the exact type of knowledge to be learned

2. a representation for this target knowledge

3. a learning mechanism

Choosing the Target Function:

The next design choice is to determine exactly what type of knowledge will be learned and

how this will be used by the performance program. Let us begin with a checkers-playing program

that can generate the legal moves from any board state. The program needs only to learn how

to choose the best move from among these legal moves.

Choosing a Representation for the Target Function:

X1: the number of black pieces on the

board x2: the number of red pieces on the

board x3: the number of black kings on the

board x4: the number of red kings on the

board

x5: the number of black pieces threatened by red (i.e., which can be captured on red's

next turn)

X6: the number of red pieces threatened by black

where wo through w6 are numerical coefficients, or weights, to be chosen by the learning

algorithm.

Partial design of a checkers learning program:

Task T: playing checkers

Performance measure P: percent of games won in the world tournament

Training experience E: games played against itself

Target function: V:Board R

Target function

representation

V(b)=w0+w1x1+w2x2+w3x3+w4x4+w5x5+w6x6

Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each describing

a specific board state b and the training value Vtrain(b) for b.

ESTIMATING TRAINING VALUES

Rule for estimating training values.

Vtrain (b) V(Successor(b))

ADJUSTING THE WEIGHTS

The Critic takes as input the history or trace of the game and produces as output a set of training

examples of the target function. As shown in the diagram, each training example in this case

corresponds to some game state in the trace, along with an estimate Vtrain, of the target

function value for this example.

The Generalizer takes as input the training examples and produces an output hypothesis that

is its estimate of the target function. It generalizes from the specific training examples,

hypothesizing a general function that covers these examples and other cases beyond the

training examples.

The Experiment Generator takes as input the current hypothesis (currently learned

function) and outputs a new problem (i.e., initial board state) for the Performance System to

explore. Its role is to pick new practice problems that will maximize the learning rate of the

overall system.

Fig: Final Design of Checkers Learning Problem

Fig: Summary of choices in designing checkers learning problem.

PERSPECTIVES AND ISSUES IN MACHINE LEARNING:

One useful perspective on machine learning is that it involves searching a very large space of

possible hypotheses to determine one that best fits the observed data and any prior

knowledge held by the learner. For example, consider the space of hypotheses that could in

principle be output by the above checkers learner. This hypothesis space consists of all

evaluation functions that can be represented by some choice of values for the weights wo

through w6.

The learner's task is thus to search through this vast space to locate the hypothesis that is

most consistent with the available training examples. The LMS algorithm for fitting weights

achieves this goal by iteratively tuning the weights, adding a correction to each weight each

This algorithm works well when the hypothesis representation considered by the learner

defines a continuously parameterized space of potential hypotheses.

Issues in Machine Learning

• What algorithms exist for learning general target functions from specific training

examples? In what settings will particular algorithms converge to the desired function,

given sufficient training data? Which algorithms perform best for which types of

problems and representations?

• How much training data is sufficient? What general bounds can be found to relate the

confidence in learned hypotheses to the amount of training experience and the character

of the learner's hypothesis space?

• When and how can prior knowledge held by the learner guide the process of generalizing

from examples? Can prior knowledge be helpful even when it is only approximately

correct?

• What is the best strategy for choosing a useful next training experience, and how does the

choice of this strategy alter the complexity of the learning problem?

• What is the best way to reduce the learning task to one or more function approximation

problems? Put another way, what specific functions should the system attempt to learn?

Can this process itself be automated?

• How can the learner automatically alter its representation to improve its ability to

represent and learn the target function?

Concept Learning:

Concept learning: Inferring a boolean-valued function from training examples of its input

and output.

A CONCEPT LEARNING TASK:

What hypothesis representation shall we provide to the learner in this case? Let us begin by

considering a simple representation in which each hypothesis consists of a conjunction of

constraints on the instance attributes. In particular, let each hypothesis be a vector of six

constraints, specifying the values of the six attributes Sky, AirTemp, Humidity, Wind, Water, and

Forecast. For each attribute, the hypothesis will either

indicate by a "?' that any value is acceptable for this attribute,

specify a single required value (e.g., Warm) for the attribute, or

indicate by a "θ" that no value is acceptable.

The inductive learning hypothesis. Any hypothesis found to approximate the target function

well over a sufficiently large set of training examples will also approximate the target function

well over other unobserved examples.

CONCEPT LEARNING AS SEARCH Concept learning can be viewed as the task of

searching through a large space of hypotheses implicitly defined by the hypothesis

representation. The goal of this search is to find the hypothesis that best fits the training

examples. It is important to note that by selecting a hypothesis representation, the designer of

the learning algorithm implicitly defines the space of all hypotheses that the program can ever

represent and therefore can ever learn.

General-to-Specific Ordering of Hypotheses Many algorithms for concept learning

organize the search through the hypothesis space by relying on a very useful structure that

exists for any concept learning problem: a general-to-specific ordering of hypotheses. By taking

advantage of this naturally occurring structure over the hypothesis space, we can design

learning algorithms that exhaustively search even infinite hypothesis spaces without explicitly

enumerating every hypothesis.

To illustrate the general-to-specific ordering, consider the two hypotheses

h1 = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

Now consider the sets of instances that are classified positive by hl and by h2. Because h2

imposes fewer constraints on the instance, it classifies more instances as positive. In fact, any

instance classified positive by hl will also be classified positive by h2. Therefore, we say that

h2 is more general than hl.

Definition: Let hj and hk be boolean-valued functions defined over X. Then hj is more general-

than-or-equal-to hk (written hj >= hk) if and only if

FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS:

Fig: Find-S Algorithm

VERSION SPACES AND THE CANDIDATE-ELIMINATION ALGORITHM:

The CANDIDATE-ELIMINATION algorithm finds all describable hypotheses that are consistent

with the observed training examples. In order to define this algorithm precisely, we begin

with a few basic definitions. First, let us say that a hypothesis is consistent with the training

examples if it correctly classifies these examples.

CANDIDATE-ELIMINATION Learning Algorithm:

REMARKS ON VERSION SPACES AND CANDIDATE-ELIMINATION ALGORITHM:

Will the CANDIDATE-ELIMINATION Algorithm Converge to the Correct Hypothesis?

The version space learned by the CANDIDATE-ELIMINATION algorithm will con- verge toward

the hypothesis that correctly describes the target concept, provided (1) there are no errors in

the training examples, and (2) there is some hypothesis in H that correctly describes the target

concept.

What Training Example Should the Learner Request Next? Up to this point we have assumed

that training examples are provided to the learner by some external teacher. Suppose instead

that the learner is allowed to conduct experiments in which it chooses the next instance, then

obtains the correct classification for this instance from an external oracle (e.g., nature or a

teacher).

How Can Partially Learned Concepts Be Used? Suppose that no addit onal training

examples are available beyond the four in our example above, but that the learner is now

required to classify new instances that it has not yet observed. Even though the version space

still contains multiple hypotheses, indicating that the target concept has not yet been fully

learned, it is possible to classify certain examples with the same degree of confidence as if

the target concept had been uniquely identified.

INDUCTIVE BIAS:

Inductive bias of CANDIDATE-ELIMINATION algorithm. The target contained in

the given hypothesis space H.

concept c is

Module 2: Decision Tree Learning and ANN

Decision tree learning is a method for approximating discrete-valued target functions, in

which the learned function is r presented by a decision tree. Learned trees can also be re-

represented as sets of if-then rules to improve human readability. These learning methods are

among the most popular of inductive inference algorithms and have been successfully applied

to a broad range of tasks from learning to diagnose medical cases to learning to assess credit

risk of loan applicants.

DECISION TREE REPRESENTATION

Figure illustrates a typical learned decision tree. This decision tree clas- sifies Saturday mornings

according to whether they are suitable for playing tennis. For example, the instance (Outlook =

Sunny, Temperature = Hot, Humidity = High, Wind = Strong) would be sorted down the leftmost

branch of this decision tree and would therefore be classified as a negative instance (i.e., the

tree predicts that PlayTennis = no).

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING:

• Instances are represented by attribute-value pairs. Instances are described by a fixed set

of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for

decision tree learning is when each attribute takes on a small number of disjoint

possible values (e.g., Hot, Mild, Cold). However, extensions to the basic algorithm

allow handling real-valued attributes as well (e.g., representing

numerically).

Temperature

• The target function has discrete output values. The decision tree in Figure 3.1 assigns

a boolean classification (e.g., yes or no) to each example. Decision tree methods

easily extend to learning functions with more than two possible output values. A more

substantial extension allows learning target functions with real-valued outputs, though

the application of decision trees in this setting is less common.

• Disjunctive descriptions may be required. As noted above, decision trees naturally

represent disjunctive expressions.

• The training data may contain errors. Decision tree learning methods are robust to errors,

both errors in classifications of the training examples and errors in the attribute values

that describe these examples.

• The training data may contain missing attribute values. Decision tree meth- ods can be

used even when some training examples have unknown values (e.g., if the Humidity

of the day is known for only some of the training examples).

THE BASIC DECISION TREE LEARNING ALGORITHM

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES In order to define

information gain precisely, we begin by defining a measure com- monly used in information

theory, called entropy, that characterizes the (im)purity of an arbitrary collection of examples.

Given a collection S, containing positive and negative examples of some target concept, the

entropy of S relative to this boolean classification is

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY

HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING:

As with other inductive learning methods, ID3 can be characterized as searching a space of

hypotheses for one that fits the training examples. The hypothesis space searched by ID3 is

the set of possible decision trees. ID3 performs a simple-to- complex, hill-climbing search

through this hypothesis space, beginning with the empty tree, then considering progressively

more elaborate hypotheses in search of a decision tree that correctly classifies the training

data.

ID3's hypothesis space of all decision trees is a complete space of finite discrete-valued

functions, relative to the available attributes. Because every finite discrete-valued function

can be represented by some decision tree, ID3 avoids one of the major risks of methods that

search incomplete

hypothesis

spaces (such as methods that consider

only

conjunctive

hypotheses): that the hypothesis space might not contain the target function.

ID3 in its pure form performs no backtracking in its search. Once it selects an attribute to test

at a particular level in the tree, it never backtracks to reconsider this choice.ID3 uses all training

examples at each step in the search to make statistically based decisions regarding how to

ELIMINATION). One advantage of using statistical properties of all the examples (e.g.,

information gain) is that the resulting search is much less sensitive to errors in individual training

examples.

INDUCTIVE BIAS IN DECISION TREE LEARNING:

Given a collection of training examples, there are typically many decision trees consistent

with these examples. Describing the inductive bias of ID3 there- fore consists of describing

the basis by which it chooses one of these consistent hypotheses over the others. Which of

these decision trees does ID3 choose? It chooses the first acceptable tree it encounters in its

simple-to-complex, hill- climbing search through the space of possible trees. Roughly speaking,

then, the ID3 search strategy (a) selects in favour of shorter trees over longer ones, and (b)

selects trees that place the attributes with highest information gain closest to the root. Because

of the subtle interaction between the attribute selection heuristic used by ID3 and the particular

training examples it encounters, it is difficult to characterize precisely the inductive bias

exhibited by ID3. However, we can approximately characterize its bias as a preference for

short decision trees over complex trees. Approximate inductive bias of ID3: Shorter trees are

preferred over larger trees.

ID3 searches a complete hypothesis space (i.e., one capable of expressing any finite discrete-

valued function). It searches incompletely through this space, from simple to complex

hypotheses, until its termination condition is met (e.g., until it finds a hypothesis consistent

with the data). Its inductive bias is solely a consequence of the ordering of hypotheses by its

search strategy. Its hypothesis space introduces no additional bias.

Occam's razor: Prefer the simplest hypothesis that fits the data.

ISSUES IN DECISION TREE LEARNING:

• Avoiding Over fitting the Data

• REDUCED ERROR PRUNING

• RULE POST-PRUNING

• Incorporating Continuous-Valued Attributes

• Alternative Measures for Selecting Attributes

• Handling Training Examples with Missing Attribute Values

• Handling Attributes with Differing Costs

Unit-II

Artificial Neural Networks:

Biological Motivation:

The study of artificial neural networks (ANNs) has been inspired in part by the observation

that biological learning systems are built of very complex webs of interconnected neurons.

In rough analogy, artificial neural networks are built out of a densely interconnected set of

simple units, where each unit takes a number of real-valued inputs (possibly the outputs of

other units) and produces a single real-valued output.

NEURAL NETWORK REPRESENTATIONS

Problems for Neural Network Learning:

• Instances are represented by many attribute-value pairs. The target function to be

learned is defined over instances that can be described by a vector of predefined

features, such as the pixel values in the ALVINN example. These input attributes may

be highly correlated or independent of one another. Input values can be any real

values.

• The target function output may be discrete-valued, real-valued, or a vector of several

real- or discrete-valued attributes.

• The training examples may contain errors. ANN learning methods are quite robust

to noise in the training data.

• Long training times are acceptable. Network training algorithms typically require

longer training times than, say, decision tree learning algorithms. Training times can

range from a few seconds to many hours, depending on factors such as the number of

weights in the network, the number of training examples considered, and the settings

of various learning algorithm parameters.

• Fast evaluation of the learned target function may be required. Although ANN

learning times are relatively long, evaluating the learned network, in order to apply

it to a subsequent instance, is typically very fast.

• The ability of humans to understand the learned target function is ot important.

The weights learned by neural networks are often difficult for humans to interpret.

Learned neural networks are less easily communicated to humans than learned

rules.

PERCEPTRONS One type of ANN system is based on a unit called a perceptron.

A perceptron takes a vector of real-valued inputs, calculates a linear combination of these

inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise. More

precisely, given inputs xl through x,, the output o(x1, . . . , x,) computed by the perceptron is

The Perceptron Training Rule:

One way to learn an acceptable weight vector is to begin with random weights, then

iteratively apply the perceptron to each training example, modify- ing the perceptron weights

whenever it misclassifies an example. This process is repeated, iterating through the training

examples as many times as needed until the perceptron classifies all training examples

correctly. Weights are modified at each step according to the perceptron training rule, which

revises the weight wi associated with input xi according to the rule

Here t is the target output for the current training example, o is the output generated by the

perceptron, and η is a positive constant called the learning rate.

Gradient Descent Training Rule

MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM

Single perceptrons can only express linear decision surfaces. In contrast, the kind of

multilayer networks learned by the BACKPROPAGATION algorithm are capable of expressing a

rich variety of nonlinear decision surfaces.

What we need is a unit whose output is a nonlinear function of its inputs, but whose output is

also a differentiable function of its inputs. One solution is the sigmoid unit-a unit very much like

a perceptron, but based on a smoothed, differentiable threshold function.

Fig: Sigmoid Threshold Unit

More precisely, the sigmoid unit computes its output o as

The BACKPROPAGATION Algorithm

we are considering networks with multiple output units rather than single units as before, we

begin by redefining E to sum the errors over all of the network output units.

The learning problem faced by BACKPROPAGATION is to search a large hypothesis space

defined by all possible weight values for all the units in the network. Gradient descent can be

used to attempt to find a hypothesis to minimize E. One major difference in the case of

multilayer networks is that the error surface can have multiple local minima, in contrast to

the single-minimum parabolic error surface.

REMARKS ON THE BACKPROPAGATION ALGORITHM

Convergence and Local Minima: BACKPROPAGATION algorithm implements a gradient

descent search through the space of possible network weights, iteratively reducing the error

E between the training example target values and the network outputs. Because the error

surface for multilayer networks may contain many different local minima, gradient descent

can become trapped in any of these. As a result, BACKPROPAGATION over multilayer

networks is only guaranteed to converge toward some local minimum in E and not

necessarily to the global minimum error.

Representational Power of Feedforward Networks:

Boolean functions. Every boolean function can be represented exactly by some network with

two layers of units, although the number of hidden units required grows exponentially in the

worst case with the number of network inputs. To see how this can be done, consider the

following general scheme for representing an arbitrary boolean function: For each possible

input vector, create a distinct hidden unit and set its weights so that it activates if and only if

this specific vector is input to the network. This produces a hidden layer that will always have

exactly one unit active. Now implement the output unit as an OR gate that activates just for

the desired input patterns.

Continuous functions. Every bounded continuous function can be approximated with

arbitrarily small error (under a finite norm) by a network with two layers of units.

Arbitrary functions: Any function can be approximated to arbitrary accuracy by a network with

three layers of units. Again, the output layer uses linear units, the two hidden layers use sigmoid

units, and the number of units required at each layer is not known in general.

Hypothesis Space Search and Inductive Bias It is interesting to compare the hypothesis space

search of BACKPROPAGATION to the search performed by other learning algorithms. For

BACKPROPAGATION, every possible assignment of network weights represents a syntactically

distinct hy- pothesis that in principle can be considered by the learner. In other words, the

hypothesis space is the n-dimensional Euclidean space of the n network weights. Notice this

hypothesis space is continuous, in contrast to the hypothesis spaces of decision tree learning

and other methods based on discrete representations.

Hidden Layer Representations One intriguing property of BACKPROPAGATION is its ability to

discover useful intermediate representations at the hidden unit layers inside the network.

Because training examples constrain only the network inputs and outputs, the weight-tuning

procedure is free to set weights that define whatever hidden unit representation is most

effective at minimizing the squared error E. This can lead BACKPROPAGATION to define new

hidden layer features that are not explicit in the input representation, but which capture

properties of the input instances that are most relevant to learning the target function.

Evaluating Hypothesis: Estimating the accuracy of a hypothesis is relatively straightforward

when data is plentiful. However, when we must learn a hypothesis and estimate its future

accuracy given only a limited set of data, two key difficulties arise

Bias in the estimate. First, the observed accuracy of the learned hypothesis over the training

examples is often a poor estimator of its accuracy over future examples. Because the learned

hypothesis was derived from these examples, they will typically provide an optimistically biased

estimate of hypothesis accuracy over future examples.

Variance in the estimate. Second, even if the hypothesis accuracy is measured over an unbiased

set of test examples independent of the training examples, the measured accuracy can still

vary from the true accuracy, de- pending on the makeup of the particular set of test examples.

The smaller the set of test examples, the greater the expected variance.

Estimation Hypothesis Accuracy: When evaluating a learned hypothesis we are most often

interested in estimating the accuracy with which it will classify future instances. At the same

time, we would like to know the probable error in this accuracy estimate (i.e., what error

bars to associate with this estimate).

Sample Error and True Error:

Definition: The sample error

sample S is

of hypothesis h with respect to target function f and data

The true error of hypothesis h with respect to target function f and distribution D, is the

probability that h will misclassify an instance drawn at random according to D.

Confidence Intervals for Discrete-Valued Hypotheses:

How good an estimate of errorD (h) is provided by errorS(h)?' for the case in which h is a

discrete-valued hypothesis. More specifically, suppose we wish to estimate the true error

for some discrete- valued hypothesis h, based on its observed sample error over a sample S,

where

• the sample S contains n examples drawn independent of one another, and independent

of h, according to the probability distribution D

• n>=30

• hypothesis h commits r errors over these n examples (i.e., errorS(h) = r/n)

Under these conditions, statistical theory allows us to make the following assertions:

• Given no other information, the most probable value of errorD(h) is errorS(h)

• With approximately 95% probability, the true error errorD(h) lies in the interval

The general expression for approximate N% confidence intervals for errorD(h) is

BASICS OF SAMPLING THEORY

A GENERAL APPROACH FOR DERIVING CONFIDENCE INTERVALS

• Identify the underlying population parameter p to be estimated, for example,

errorD(h).

• Define the estimator Y (e.g., errorS(h)). It is desirable to choose a minimum- variance,

unbiased estimator.

• Determine the probability distribution DY that governs the estimator Y, including its

mean and variance.

• Determine the N% confidence interval by finding thresholds L and U such that N% of

the mass in the probability distribution DY falls between L and U

DIFFERENCE IN ERROR OF TWO HYPOTHESES

Estimate the difference d between the true errors of these two hypotheses.

The obvious choice for an estimator in this case is the difference between the sample errors,

which we denote by d^

It can also be shown that the variance of this distribution is the sum of the variances of errors,

errorS1(hl) and errors2(h2)

approximate N% confidence i

Unit-III

A: Bayesian learning

Bayesian learning provides a quantitative approach which updates probability for a

hypothesis upon more information being available.

Bayesian learning uses:

• Prior hypothesis.

• New evidences or information.

Features of Bayesian learning methods include:

• Each observed training example can incrementally decrease or increase the estimated

probability that a hypothesis is correct.

• Prior knowledge can be combined with observed data to determine the final

probability of a hypothesis.

• Bayesian methods can accommodate hypotheses that make probabilistic predictions.

• New instances can be classified by the combining the predictions of multiple

hypotheses, weighed by their probabilities.

• In cases, where Bayesian learning seems to be difficult, they can provide a standard of

optimal decision making against which other practical methods can be measured.

The Bayesian learning is used to calculate the validity of a hypothesis for the given data. The

key to this estimation is the Bayes theorem.

How do we specify that the given hypothesis best suits our data?

One way to define the best hypothesis is to check if the hypothesis has the maximum

probability for the given data D.

Bayes theorem comes up with a way to find the best hypothesis using the prior probabilities

given and the observed data. The outcome of the Bayes theorem will be the posterior

hypothesis.

Bayes Theorem:

P(h)= This is prior probability that the hypothesis holds, without observing the training

examples.

P(D)=This is the probability of given data D, without the knowledge on which hypothesis

holds.

P (D| h) = This denotes the probability of data D for the given hypothesis h.

P (h| D) = This denotes the posterior hypothesis. It is an estimate that the hypothesis h holds

for the given observed data. (It is the probability of individual hypothesis, given the data)

P (h| D) increases with respect to increase in P(h) and P (D| h).

Maximum A Posteriori (MAP) hypothesis:

The goal of Bayesian learning is finding the maximally probable hypothesis. This is called

Maximum a posteriori (MAP) hypothesis.

(2)

(3)

While, deducing to step (3), we can ignore P(D) as it is a constant and is independent of h. H

is the hypothesis space that includes all the candidate hypotheses.

In some cases, we assume that every hypothesis ‘h’ of the hypothesis space ‘H’, has equal

probability (P(hi) = P(hj) for all hi and hj in H). Then, step (3) can be further solved as,

So, any hypothesis that maximizes P (D| h) is called the maximum likelihood hypothesis,

hML.

Let us apply Bayes theorem to an example:

We have prior knowledge that only 0.008 have cancer over the entire population. The lab test

returns a correct positive result in only 98% of the cases. The lab test returns a negative result

in 97% of the cases. Suppose we now consider a new patient for whom lab test returns a

positive result, should we diagnose the patient or not?

So, the given data is P(cancer) = 0.008

P(~cancer) =1-0.008=0.992

P (+| cancer) = 0.98

P(-|cancer) =1-0.98=0.02

P(-|~cancer) = 0.97

P(+|~cancer) =1=0.97=0.03

hMAP = argmax P(D|h) P(h)

hMAP = argmax P(+|cancer) P(cancer)

hMAP = argmax P(+|~cancer) P(~cancer)

P(+|cancer) P(cancer) = 0.98 * 0.008= 0.0078

(1)

P(+|~cancer) P(~cancer) = 0.03 * 0.992 =0.0298

So, hMAP = 0.0298. So, the patient needn’t be diagnosed.

Bayes Theorem and Concept learning

In concept learning, we search for hypothesis that best fits the training data from a large

space of hypotheses.

Bayes theorem, also follows a similar approach. It calculates the posterior hypothesis of each

hypothesis given the training data. This posterior hypothesis is used to find out the best

probable hypothesis.

Brute force Bayes concept learning

Brute force MAP learning algorithm

This algorithm provides a standard to judge the performance of other concept learning

algorithms.

1. For each hypothesis h in H, calculate the posterior hypothesis.

2. Output the hypothesis hMAP with the highest posterior probability

For specifying values of P(h) and P(D|h), we make few assumptions:

1. The training data D is not erroneous data.

2. The target concept c is contained in the hypothesis.

3. Any hypothesis is assumed to be most probable than any other.

So, with the above assumptions:

 (1)

 (2)

P(D|h) is the probability of data for given world of hypothesis holds h.Sice, we are

assuming that it is a noise free data, the probability is either 1 or 0, implying 1 if the given

hypothesis is consistent with h, else 0 (i.e., inconsistent).

So, if we substitute the values of P(h) and P(D|h) into the Bayes theorem,

 (3)

Considering h to be an inconsistent hypothesis, substitute corresponding values of (1) and

(2) into (3)

Considering h to be a consistent hypothesis, substitute corresponding values of (1) and (2)

into (3)

VSH,D is the subset of hypotheses from H that are consistent with D. The sum over all

hypotheses of P(h|D) is 1. The value of P(D) can be derived as,

So, we can conclude that,

Schematically, this process can be depicted as,

From the figure, we can understand that:

1. Initially fig (a), all the hypotheses have same probability.

2. As the data is being observed fig (b), the posterior probability of the inconsistent

hypothesis becomes zero.

3. Eventually, we are approaching a state where we have hypotheses that are consistent

with the data given.

MAP hypothesis and consistent learners

The learning algorithm is a consistent learner if it outputs hypothesis that commits zero

errors. So, a consistent learner outputs a MAP hypothesis for uniform prior probability

distribution over H and for noise- free data.

Considering, how can we use Bayesian learning in Find-S and Candidate elimination

algorithm which do not use any numerical approaches (like probability)?

Find-S algorithm outputs the maximally specific consistent hypothesis. So as Find-S

algorithm outputs a consistent hypothesis, it can be implied that it outputs MAP

hypothesis under the probability distributions P(h) and P(D|h). Though Find-S doesn’t

manipulate any probabilities explicitly, these probabilities at which MAP hypothesis can

be achieved are used for characterizing the behaviour of Find-S.

Though Bayesian learning takes a lot of computation, it can be used to characterize the

behaviour of other algorithms. As in inductive bias of learning algorithm where set of

assumptions made; Bayesian interpretation presents a probabilistic approach using Bayes

theorem to find the assumptions to deduce a MAP hypothesis.

For, Find-S and Candidate elimination algorithms, the set of assumptions can be “the

prior probabilities over H are given by the distribution P(h), and the strength of data in

accepting or rejecting a hypothesis is given by P(D|h).”

Maximum Likelihood and Least- squared error hypothesis

In learning a continuous-valued target function, Bayesian learning states that under

certain assumptions any learning algorithm that minimizes the squared error between

the output hypothesis predictions and the training data will output a maximum

likelihood.

Consider an example of learning a real-valued function, which has f as its target function.

The training examples <xi, di> where di=f(xi)+ei. Here f(xi) is the noise-free value of the

target function an ei is representing error. The error ei corresponded to the variance.

So, we can find the least-squared error hypothesis using the maximum likelihood

hypothesis.

 (1)

Assuming that the training examples are mutually independent given h, P(D|h) can be

written as product of p (di, h), where p is the probability density function. The mean is

equal to target function or the hypothesis.

 (2)

 (3)

Applying logarithm, we get,

 (4)

The first term is not dependent on the hypothesis h, so can be discarded.

 (5)

We can discard the remaining constants. In the equation (5), we are maximizing the

negative quantity, which implies minimizing the positive quantity.

 (6)

The equation (6) shows the minimum likelihood hypothesis that minimizes the sum of the

squared errors between the observed training data di and the hypothesis predictions h(xi).

Maximum likelihood hypothesis for predicting probabilities

Suppose that we wish to learn a target function f’: X {0,1}, such that f’(x)= P(f(x)=1).

In order to find the minimum likelihood hypothesis, we must find P(D|h) where D is the

training data such as D= {<x1,d1>…. <xm,dm>}, di is the observed 0 or 1 value for f(xi).

Assuming that xi and di are random variables, and assuming that each training example is

independently drawn, we can say that,

 (1)

We further assume that, x is independent of h, so (1) can be written as:

 (2)

In general, equation (2) can be depicted as:

 (3)

The equation (3) can be re-expressed as:

The equation (4) can be substituted in equation (1), we get:

 (5)

So, the maximum likelihood can be derived as:

 (6)

By substituting, (5) in (6), we get,

 (7)

P(xi) can be discarded as it is constant,

 (8)

So, by applying logarithm to (8), the maximum likelihood will be,

Gradient search to maximize likelihood in neural net

Gradient ascent can be used to define maximum likelihood hypothesis. The partial derivative

of G (h, D) with respect to weight wjk from input k to unit j is:

 (4)

 (1)

If the neural network is constructed from a single layer of sigmoid units, we have,

 (2)

Where,

xijk is the kth input to unit j for the ith training example.

 is the derivative of sigmoid squashing function.

Substituting (2) in (1),

 (3)

We are using gradient ascent to maximize P(D|h), we use weight-update rule:

where,

where is the small positive constant that determines the step size of the gradient ascent

search.

This weight update rule can be used to maximize the hML.

Minimum Description length principle

Minimum description length principle uses basics of information theory to modify the

definition of hMAP.

Consider hMAP,

 (1)

Minimizing (1) in terms to log2,

Minimizing (2) to its negative,

 (2)

 (3)

Equation (3) can be interpreted as a statement that short hypotheses are preferred. As in

information theory, we minimize the expected code length by assigning shorter codes to

messages that are more probable. We will use code C, that encodes the message i, this is

denoted with Lc(i).

So, equation (3), can be interpreted as,

-log2 P(h): It is the size of the description of hypothesis space H. So, = -log2 P(h).CH is

the optimal code for hypothesis space H.

-log2 P(D|h): It is the description length of training data D given the hypothesis h.

= -log2 P(D|h). CD|h is the optimal code for describing data D assuming that both

sender and receiver know the hypothesis.

So, equation (3), can be written as,

The minimum description length (MDL) principle suggests to choose hypothesis that

minimizes the sum of two description lengths.

So,

If we consider, C1 as the optimal coding for CH and C2 as the optimal coding for CD|h, then

hMAP= hMDL.

Naïve Bayes Classifier

Naïve Bayes classifier is used for learning tasks that describe the instances with conjunction

of attribute values. A set of training examples is described by the tuple of attribute values <

a1, a2, …., an>. We can use the Bayesian approach to classify the new instance and to assign

it to the most probable target value,

(1)

By Bayes theorem, the expression (1) can be rewritten as:

 (2)

The naïve Bayes classifier assumes that the attribute values are conditionally independent

given the target value. That is, the probability of observing the conjunction a1, a2, …, an is

product of probabilities of the individual attributes.

Naïve Bayes assumption:

By substituting (3) in (2),

(3)

(4)

: This is the output of the naïve Bayes classifier.

B: Instance-based learning

Instance-based learning methods store the training examples and classify them only when a

new instance has to be classified. When a new query is given to these methods, a set of

similar instances are retrieved from memory and are used to classify the new instance.

Instance-based learning methods can construct a different approximation for each distinct

query instance that must be classified, that is, rather than estimating the target function as a

whole for the entire instance space, instance-based learning methods estimate target function

for every new instance that has to be classified.

Instance-based learning methods are called “Lazy learners”, as they do not process the

training data set until a new instance has to be classified.

Through instance-based learning though we have complex target function, it still can be

described by a collection of less complex local approximations.

The instance-based learning approaches cost high in classifying data, this is because the

classification is only done when a new instance is observed. These also try to consider all the

attributes while retrieving the similar training examples from the memory. This way finding

the set of similar training examples from a large collection of data, might be tedious.

K-nearest neighbor learning algorithm (KNN)

KNN algorithm assumes that all instances correspond to points in the n-dimensional space. It

is defined using Euclidean distance. If x is the arbitrary instance, the vector

where ar(x) denotes the value of the rth attribute of instance x.
The distance between two instances xi and xj is defined to be d(xi,xj), where,

KNN algorithm can be used for estimating discrete values and continuous values.

 - It is the class label for xq.

 - It is the class label of xi.

The above algorithm can be used to find the discrete-values target function. For continuous

value, the value returned by the algorithm is:

So, in KNN, when a new instance xq is given to classify, the algorithm finds outs the ‘k’

nearest neighbor’s for xq, and then classifies instance xq based on the class labels of these ‘k’

nearest neighbours.

Distance weighted nearest neighbour algorithm

The KNN can be further improved by adding a weight to the existing instances. The highest

weight is assigned to the instances that are near to xq. So, the value returned by the algorithm

would be:

where,

If xq exactly matches with xi, the is assigned with .

Remarks on k- nearest neighbor algorithm

• KNN is robust to noisy training data.

• KNN effectively works on the large set of training models.

Locally weighted regression

In KNN, we have observed that the target function f(x) is at single query point x=xq. Locally

weighted regression finds the approximation for f over a local region surrounding xq. As its

name suggests, locally weighted regression is used to approximate real-valued functions

using weight, based on the distances from the query point over a locally surrounded region of

xq.

Generally, regression is of the form,

W0 – Bias.

ai(x) – Denotes the value of ith attribute of instance x.

The error function that was used for global approximation was:

And we used a training rule to adjust the weights:

 , where,

- it is the change in weight.

- Learning rate.

x: instance.

D: complete dataset.

To find the local approximation, we can redefine the error criterion E, using the three

possible approaches:

1. Minimize the squared errors over the k nearest neighbors:

2. Minimize the square error over entire dataset D, while weighting the error of each

training example by some decreasing function K od its distance from xq:

3.

Considering the 3 criteria might be a good option as the computation cost is independent of

the total number of training examples.

Radial Basis Functions (RBF)

Radial basis network is used for global approximation of the target function which is

represented be a linear combination of many local kernel functions.

In RBF, the learned hypothesis is the function of the form:

where,

xu: Instance.

Ku (d (xu, x)): Kernel function which decreases as distance d (xu, x) increases.

 onstant that specifies the no. of kernel functions to be

included. - It is the global approximation to f(x).

The kernel function is given by:

RBF networks are trained in two stage process:

1. The k value is defined to determine the no. of hidden layers, and each hidden layer u

is defined using and .

2. The weights wu are defined to maximize the fit of the network to the training data.

Case-Based reasoning (CBR)

CBR is an instance- based learning approach that represents its instances as symbolic

representations. There are three components required for CBR:

1. Similarity function like Euclidean function.

2.Approximation and adjustment of instance.

3.Symbolic representation

Let’s design a CADET (Case-based design model) for designing a water faucet. To design a

new model for a water faucet, CADET uses its previously stored models to approximate the

symbolic representation for a new water faucet.

So, to design a model for the scenario given in the above diagram, the CADET has found a

similarity with the T-junction pipe (which is from its library). In T- junction pipe, T, Q are

quantitative parameters that represent temperature and waterflow respectively. So, if T1, Q1 is

positive, it means that there is water flow to T3, Q3 from that end. The temperature can be

considered either to be cold or warm, and it depends on the application build. So, let’s

assume T1 is cold and T2 is warm. So Q1 is +, it means Q3 gets cold water. Similarly, if Q2 is

+, Q3 has water flow from that end with warm water.

Remarks on lazy learner and eager learner

Lazy method takes less computation during the training and more compute time during the

prediction of target value for a new query. Lazy learners upon seeing the new instance xq

decide to generalize the training data, whereas, eager learners by the time they have a new

instance, they already have an approximated target function.

The lazy methods use effectively richer hypothesis space as it follows local approximation to

the target function for each instance. Though eager methods tend to form local

approximations too, they don’t have ability as lazy learners do.

GENETIC ALGORITHMS

Genetic algorithms provide learning methods that can be compared to biological evolution.

The hypotheses are described by set of strings or symbolic expressions or even computer

programs. Genetic Algorithms perform repeated mutation to get the best hypothesis. The best

hypothesis is the one that optimizes the fitness score. The algorithm iteratively works on a set

of hypotheses called as population, and in each iteration the members are evaluated based on

a fitness function. The members that are mostly fit are made as new population. Some of

these separated members are passed to the next generation and few others are used for

creating off-springs using crossover and mutation. This process is repeated until best

hypotheses is formed.

The inputs to this algorithm are:

1. Fitness function to rank the hypotheses.

2. Threshold, which specifies about level of fitness for termination.

3. Size of population.

4. Parameters on how the off-springs must be generated.

At every iteration, hypotheses are generated for the current population. A probabilistic

approach is used to choose hypotheses that are to be passed to next generation:

 (1)

These selected hypotheses are passed to next generation along with few other members that

are formed through crossover. In crossover, two hypotheses are chosen (consider them to be

parent) from current population based on (1); some properties of each them are separated and

combined to form new hypotheses.

Genetic Algorithm operators

The most common operators in Genetic algorithm are mutation and crossover. Mutations are

usually performed after crossover.

The crossover operator produces two off-springs from two parents. It copies selected bits

from each parent and generates the new offspring by combining these selected bits. How do

we choose these selected bits? For this we use an additional string called crossover mask.

1. Single crossover: The crossover mask always begins with contiguous n number of

1’s, followed by necessary 0’s.

The first offspring is combined with bits selected from first parent and then bits

selected from second parent. The second offspring contains the bits that are not used

in the first offspring.

2. Two-point crossover: The crossover mask begins with n0 0s and n1 1s, followed by

necessary number of zeroes. The offspring in two-point crossover is created by

substituting intermediate segments of one parent into the middle of the second parent.

3. Uniform crossover: The crossover mask is generated in random. The off-springs are

produced from combining the uniform bits from each parent.

Mutations are performed by changing the bits from a single parent.

Fitness function and Selection

Fitness function is used to rank the hypotheses so that they can be transferred to the next

generation.

Different fitness measures can be used to select the hypotheses:

1. Fitness proportionate selection or Roulette wheel selection: It proposes that the

probability of the hypotheses will be selected is given by ratio of its fitness to the

fitness of other members in the current population.

2. Tournament selection: Two hypotheses are chosen randomly, and using some

probability measure p, the more fit hypotheses is estimated.

3. Rank Selection: The hypotheses in the current population are sorted based on their

fitness score. Based on the fitness rank of these sorted hypotheses, the hypotheses are

selected that are to be transferred to the next generation.

Hypothesis Space Search

Genetic Algorithms use randomized beam search method to get the maximally fit hypothesis.

Genetic algorithm experiences crowding. Crowding is a phenomena where the highly fit

individuals in the population quickly reproduces and eventually, the population is dominated

with these individuals and individuals that are similar to these. Because of crowding, there

with be less diversity in the population, which effects the process of genetic algorithm.

How can we reduce crowding?

1. Selecting a different fitness function other than Roulette wheel selection.

2. Restricting the kinds of individuals to generate off-springs.

Population Evolution and the schema theorem

The schema theorem provides a mathematical approach to characterize evolution of the

population within the genetic algorithm. It is based on the patterns that are used to describe

the set of bit strings.

A schema in any string is composed of 0s, 1s, *’s. *’s can be interpreted as “don’t care”

conditions. The schema theorem characterizes in terms of number of instances representing

each schema. Suppose m (s, t) is the number of instances of schema s in the population at the

time t. Schema theorem describes an expected value m (s, t+1) in terms of m (s, t).

To calculate m (s, t+1) which is also considered as E (m (s, t+1)), we use the probabilistic

distribution:

f(h)- fitness of individual bit string h.

- Average fitness of all the individuals in the population.

The probability that we will select a hypothesis from the representative schema s is:

n- number of individuals in the population.

- indicates that h belongs to schema and also the population.

- average fitness of instances of schema s at time t.

As we have n independent selection steps, we can create a new generation that is n times the

probability.

The schema theorem considers only the single- point crossover and the negative influence of

genetic operators. So, the schema theorem thus provides a lower bound to the expected

frequency of schema s:

,

Where,

pc- probability of single-point crossover.

pm- probability that a bit will be mutated.

o(s)- the number of defined bits in the schema.

d(s)- distance between left most and rightmost defined bits in s.

l- length of individual bit strings in population.

Genetic programming

Here, the individuals that are evolving are computer programs.

The programs are represented in form of trees corresponding to their parse trees. Every

function call is represented by the node in the tree, and its arguments are the descendant

nodes of the tree. Let us suppose a function sin(x) + √𝑥2 + 𝑦. The tree representation of this

equation would be as:

In every iteration, a new generation of individuals is produced. The crossover operations are

performed by replacing a randomly chosen subtree of one parent program by a subtree from

another parent program.

Remarks on Genetic programming

1. These evaluate computer programs.

2. They provide intriguing results despite the huge size of hypothesis space it has to

search.

3. The performance depends on the choice of representation and on choice of fitness

function.

Models of evolution and learning

Lamarckian Evolution

He proposed that the experiences inculcated by an individual during the lifetime, will be

directly affecting the genetic makeup of their offspring. Despite the current view that states

the experiences learned during the lifetime will not affect the genetic make up of off-spring,

Lamarckian proposal is believed to improve the effectiveness of computerized genetic

algorithms.

Baldwin effect

It is based on the following observations:

1. If a species is evolving in a changing environment, there will be evolutionary pressure

that favour individuals that have capability to learn in their lifetime.

2. The individuals who are able to learn many traits depend less on their genetic code.

They support diverse gene pool, which results in rapid evolutionary adaptation.

Baldwin effect suggested that by increasing survivability, the individual learning supports

more rapid evolutionary progress, which increases the chance for species to evolve

genetically.

Unit -IV

Learning Sets of Rules

There are different ways to learn rules, rules can be considered as the hypothesis. We can use

decision trees, or genetic algorithms in order to derive hypothesis. But there are few algorithms

that directly learn rules unlike decision tree which first constructs tree and then generates rules.

These algorithms that directly learn rule sets uses sequential covering algorithms which learns a

single rule at a time with every iteration. The sequential covering algorithms finally result a set

of rules (hypotheses).

The rules are expressed using Horn clauses (IF-THEN representation)

The predicate Parent (x, y) implies that y is parent of x and the predicate Ancestor (x, y) implies

that y is ancestor of x. If we observe the second rule, it can be understood as, if z is the parent of

x and y is ancestor of z, then y will be the ancestor of x.

Sequential Covering algorithm

Sequential covering algorithm uses LEARN_ONE_RULE subroutine and sequentially learns rules

which cover full set of positive examples. In every iteration a new rule is formed and is added to

the Learned_rules set, and the training examples that are correctly classified with the new rule are

removed. This is an iterative process and it happens until a desired fraction of positive training

examples are classified.

So, how do we implement LEARN_ONE_RULE?

We can implement a LEARN_ONE_RULE, by using similar approach as ID3. Initially, a general

rule is formed, which is eventually made more specific by adding new attributes. This follows a

greedy approach. LEARN_ONE_RULE though doesn’t cover the entire dataset; it provides rules

that have high accuracy.

Each hypothesis in the LEARN_ONE_RULE is the conjunction of attribute value. The result of

the LEARN_ONE_RULE a rule whose performance is high. As this LEARN_ONE_RULE is

called multiple times by the sequential covering algorithm; collection of rules is formed that

cover the training examples.

 Variations

There are some other approaches that can be used to find set of if-then rules:

1. Negative-as-failure: This classifies any instance as negative if it doesn’t prove to be

positive.

2. AQ Algorithm: This learns a disjunctive set of rules that together cover the target

function.

There are other evaluation functions as LEARN_ONE_RULE, which can be used to evaluate the

performance:

1. Relative frequency: n denotes the no. of examples that rule matches and ncdenotes the no.

of examples that are correctly classified.

2. M-estimate of accuracy: This approach is preferred when data is scarce.

n- no. of examples.

nc- no. of examples correctly classified.

p- prior probability from entire dataset.

m- weight or equivalent no. of examples for weighing p.

3. Entropy: It measures the uniformity of the target function values.

Learning first-order rules

Terminology

There are some terminologies:

1. All expressions are composed of constants (Capital symbols), variables (lowercase

values), predicate symbols (true or false) and functions.

2. Term: It is a constant, any variable or any function applied on term.

3. Literal: A literal is any predicate or its negation applied to any term.

4. Clause: A clause is disjunction of literals.

5. Horn Clause: It is a clause containing at most one positive example.

H is a positive literal. The above expression can be represented as,

This is equivalent to:

First-Order Horn Clauses:

First order horn clauses provide generalized rules whereas prepositional representations

are more specific. Assume an example where the target value of Daughter(x,y) is to be found.

Daughter(x,y) is true if x is daughter of y, else it is false. So the positive example of this

scenario is given as:

So, the prepositional representation would be as,

This rule is more specific, so first-order representations are used to provide more generalized

rules:

x, y are variables that can bound to any person.

First-order horn clauses also refer to variables that do not exist in postconditions, but occur in

preconditions.

In the above rule, z is in pre-condition but not in postcondition. Whenever a variable occurs in

only preconditions, such rules are satisfied as long as there’s binding of variable that satisfies the

corresponding literal.

Learning sets of first-order rules: FOIL

FOIL algorithm seems to be same as Sequential covering algorithm as it uses the

LEARN_ONE_RULE routine and also it learns sets of first-order rules, one at a time. FOIL

restricts the literals that contain function symbols. FOIL is more expressive than Horn clauses.

FOIL algorithm learns one rule at time, and removes the positive examples covered by the rules

in every iteration. The inner loop accommodates first-order rules. FOIL seeks only rules that

predict when the target literal is True. The outer loop adds a new rule to disjunctive hypothesis,

Learned_rules. With every new rule we generalize the current disjunctive hypothesis. The inner

loop of FOIL performs general_to_specific search on the second hypothesis space to find

preconditions that form pre-conditions of new rule.

How FOIL is different?

1. In inner loop, FOIL employs a detailed approach to generate candidate specializations of

the rule.

2. FOIL uses Foil_Gain as it’s performance unlike entropy that is used in

LEARN_ONE_RULE. FOIL covers only positive examples.

FOIL will form recursive rules when target predicate is included in the list of predicates. In case

of noise-free data, FOIL continues to ass new literals to the rule until no negative example is

covered. To handle noisy data, the search is continued until some limit of accuracy, coverage and

complexity.

Induction as inverted Deduction

Induction means to derive a principle from set of observations, whereas deduction means to

generate different observations from the principle or theory. Inductive logic programming is also

based on observation that induction is just the inverse of deduction. The learning means to discover

hypothesis that satisfies both given training data D, back ground knowledge B. Here, xidenotes the

instance and f(xi) is the target value. So, the hypothesis has to classify

f(xi)deductively from hypothesis h, background knowledge B, and the description xi.

(1)

So, f(xi) follows deductively from (B ^ h ^ xi) or it can also be said as “(B ^ h ^ xi) entails f(xi) “.

(1) describes the constraint that must satisfy every training instance xiand the target value

f(xi) must follow deductively from B, h, and xi.

To understand the role of back ground knowledge, let us consider a positive example Child

(Bob, Sharon), where the instance is described by literals Male (Bob), Female (Sharon), and

Father (Sharon, Bob). The background knowledge is provided as,

Parent (u, v) Father (u, v). So, this situation can be described using (1) as:

So, the probable hypotheses that satisfy the constraint (B ^ h ^ xi) ├ f(xi), could be:

h1could have been generated even if there is no background knowledge. But, h2 can only be

generated with some background knowledge.

In this example, we have added a new predicate Parent which was not present in the original

description of xi. This process of augmenting predicates based on the back ground knowledge

is called constructive induction.

An inverse entailment operator produces the hypothesis that satisfies equation (1) by taking

training data and background knowledge as input. It is represented as O (B, D).

To choose hypotheses that follow the constraint, the inductive logical programming uses

Minimum description length principle.

Few observations while formulating the inverse entailment operator:

1. This formulation subsumes the common definition of finding the learning task as finding

some general concept that matches a given set of training examples.

2. By using background knowledge B, we can provide a rich definition of when the

hypothesis might fit the data and also provide learning methods which search for

hypotheses using B, rather than just searching the space of syntactically legal hypotheses.

There are also some difficulties faced by the inductive logical programming upon following

this formulation:

1. They need noise-free data.

2. The search through the space of hypotheses is difficult in general case, as there are many

hypotheses that satisfy (B ^ h ^ xi) ├ f(xi).

3. The complexity of hypothesis space increases with increase in background knowledge.

Inverting Resolution

The resolution rule is a sound and complete rule for deductive inference in first-order

logic.

How can we invert the resolution rule to form an inverse entailment operator?

Let L be an arbitrary propositional literal, and P and R be arbitrary prepositional clauses. The

resolution rule is:

The rule has two assertions, P ˅ L and ¬L ˅ R, it is obvious that L and ¬L are false. So, either P

or R must be true.

Assume that there are two clauses C1 and C2, the resolution operators identify the literal, suppose

M, that exists as positive literal in C1 and negative literal in C2. The propositional resolution

operator then comes to a conclusion based on the resolution rule. For example,

M= ¬KnowMaterial, which is in C1 and C2 has ¬(¬KnowMaterial). The conclusion from the

clause is union of literals C1-{L}=PassExam and C2-{¬L} = ¬Study. This conclusion is based on

the resolution rule.

The inductive entailment operator must derive one initial operator, suppose C2, with given a

resolvent C and the other initial operator C1.

For example, consider C= A ˅ B and the initial clause C1= B ˅ D. We must derive C2. If we

observe the definition of resolution rule, any literal that occurs in C but not in C1 must be

present in C2 and the literal that is in C1 but not in C, must have been removed from the

resolution rule, and its negation is in C2. So, C2= A ˅ ¬D. There may be some other possibilities

of C2 such that C2 and C1 produce a resolvent C.

First-Order Resolution

The resolution rule can be extended to first-order expressions using unifying substitutions.

Substitution is mapping of variables to terms. Suppose, θ = {x/Bob, y/z}, this indicates x can

be replaced with Bob and y can be replaced with z. Wθ indicates the result of applying to

substitution θ to expression W. Suppose, L=Father(x, Bill), the substitution Lθ= Father (Bob

,Bill).

Unifying substitution: θ is a unifying substitution when L1 θ=L2 θ. The significance of unifying

substitution is the resolvent of the clauses C1 and C2 is found by identifying a literal M, that

appears in C1 such that it is ¬M in C2. The resolution rule to find resolvent C:

Inverting Resolution: First-order Case

In this θ is factored as θ1 and θ2 . θ1 has substitutions that relate to C1 and θ2 has substitutions

of C2. So,

 (1)

This is factorized as

(2) Can be expressed as:

(3)

C2 can be found by substituting L2 = ¬L1 θ1 θ2
-1. So the inverse resolution rule for the first-order

logic is:

(4)

Progol

Progol system employs an apprach where,the inverse entailment can also be used to generate a

most specific hypothesis, that satisfies both background knowledge and observed data. This most

specific hypothesis along with an additional constraint(that is, the hypotheses considered are

(2)

more general than this specific hypothesis) is used to bound a general-to-specific search through

hypothesis space.

The algorithm of such system would be as:

1. The user specifies a restricted language of first-order expressions to be used as hypothesis

space H.

2. Progol uses sequential covering slgorithm to learn a set of expressions from H that cover

the data.

3. Progol then performs a general-to-specific search of hypothesis space bounded by the most

general possible hypothesis and by the specific bound hi. Within this set of hypotheses, it

seeks the hypothesis having minimum description length.

Analytical Learning

Introduction

• Inductive learning methods, i.e. methods that generalize from observed training

examples.

• The key practical limit on these inductive learners is that they perform poorly when

insufficient data is available.

• One way is to develop learning algorithms that accept explicit prior knowledge as an input,

in addition to the input training data.

• Explanation-based learning is one such approach.

• It uses prior knowledge to analyze, or explain, each training example in order to infer

which example features are relevant to the target function and which are irrelevant.

• These explanation helps in generalizing more accurately than inductive learning

• Explanation- based learning uses prior knowledge to reduce the complexity of the

hypothesis space to be searched, thereby reducing space complexity and improving

generalization accuracy of the learner.

Example 1:

Let us consider the task of learning to play chess. Here we are making our program to recognize

the game position i.e. target concept as "chessboard positions in which black will lose its queen

within two moves." Figure 1 shows the positive samples of training concept.

Now if we take inductive learning method to perform this task, it would be difficult because the

chess board is fairly complex (32 pieces can be on any 64 square) and particular patterns i.e. to

place the pieces in the relative positions (placing them exactly following game rules).So for all

these we need to provide thousand of training examples similar to figure 1 to expect an inductively

learned hypothesis to generalize correctly to new situations.

Even after considering only the single example shown in Figure 1 , most would be willing to

suggest a general hypothesis for the target concept, such as "board positions in which the black

king and queen are simultaneously attacked," and would not even consider the (equally

consistent) hypothesis "board positions in which four white pawns are still

locations."So we can’t generalize successfully with that one example.

in their original

Now why to consider training example as positive target concept?"Because white's knight is

attacking both the king and queen, black must move out of check, thereby al- lowing the knight

to capture the queen." They provide the information needed to rationally generalize from the details

of the training example to a correct general hypothesis.

What knowledge is needed to learn chess? It is simply knowledge of which moves are legal for

the knight and other pieces, the fact that players must alternate moves in the game, and the fact

that to win the game one player must capture his opponent's king.

However, in practice this calculation can be frustratingly complex and despite the fact that we

humans ourselves possess this complete, perfect knowledge of chess, we remain unable to play the

game optimally.

Inductive and Analytical Learning Problems

➢ In inductive learning, the learner is given a hypothesis space H from which it must select

an output hypothesis, and a set of training examples D = {(xl, f (x~)), . . . (x,, f (x,))} where

f (xi) is the target value for the instance xi. The desired output of the learner is a hypothesis

h from H that is consistent with these training examples.

➢ In analytical learning, the input to the learner includes the same hypothesis space H and

training examples D as for inductive learning. In addition, the learner is provided an

additional input: A domain theory B consisting of background knowledge that can be

used to explain observed training examples. The desired output of,the learner is a

hypothesis h from H that is consistent with both the training examples D and the domain

theory B.

To illustrate, in our chess example each instance xi would describe a particular chess position,

and f (xi) would be True when xi is a position for which black will lose its queen within two

moves, and False otherwise. Now we define hypothesis space H to consist of sets of Horn

clauses (if-then rules) where predicates used rules refer to the positions or relative positions of

specific pieces on the board. The domain theory B would consist of a formalization of the rules

of chess.

Note in analytical learning, the learner must output a hypothesis that is consistent with both the

training data and the domain theory.

Example2:

Table 1. SafeToStack

The example 2 is about Analytical Learning problem SafeToStack (x, y).

Here we chosen

hypothesis space H which is set of hypothesisfrom first order if- then rules (i e. Horn Clause). The

example Horn clause hypothesis shown in the table asserts that it is SafeToStack any object x on

any object y, if the Volume of x is Lessthan the Volume of y. The Horn clause hypothesis can refer

to any of the predicates used to describe the instances, as well as several additional predicates and

functions. One such example is SafeToStack(obj1, obj2) shown in table.

Here domain theory considered will explain certain pairs of objects can be safely stacked on one

another (same as chess example it takes all the rules of the game). The domain theory shown in

the table includes assertions such as "it is safe to stack x on y if y is not Fragile. Here the domain

theory also uses subsequent theories i.e. pedicators such as Lighter has more primitive attributes

like weight,vol,etc which helps

classify.

to generalize more accurately and the given is sufficient to

LEARNING WITH PERFECT DOMAIN THEORIES: PROLOG-EBG

• we consider explanation-based learning from domain theories that are perfect, that is,
domain theories that are correct and complete.

• A domain theory is said to be correct if each of its assertions is a truthful statement about

the world.

• A domain theory is said to be complete with respect to a given target concept and

instance space, if the domain theory covers every positive example in the instance space.

• But our definition of completeness does not require that the domain theory be able to

prove that negative examples do not satisfy the target concept.

• So we now with help of PROLOG-EBG explain definition of completeness includes full

coverage of both positive and negative examples by the domain theory.

PROLOG-EBG Algorithm:

PROLOG-EBG is a sequential covering algorithmthat considers the training data incrementally.

For each new positive training example that is not yet covered by a learned Horn clause, it forms

a new Horn clause by:

(1) explaining the new positive training example,

(2) analyzing this explanation to determine an appropriate generalization, and

(3) refining the current hypothesis by adding a new Horn clause rule to cover this positive

example, as well as other similar instances.

Fig 2. Explanation of training example

The bottom of this figure depicts in graphical form of +ve training example Sa eToStack(Objl ,

0bj2) from Table 1. The top of the figure depicts the explanation constructed for this training

example. Notice the explanation, or proof, states that it is SafeToStackObjl on 0bj2 because Objl

is Lighter than Obj2. Furthermore, Objl is known to be Lighter, because its Weight can be inferred

from its Density and Volume, and because the Weight of 0bj2 can be inferred from the default

weight of an Endtable. The specific Horn clauses that underlie this explanation are shown in the

domain theory of Table 1 . Notice that the explanation mentions only a small fraction of the

known attributes of Objl and 0bj2 (i.e., those attributes corresponding to the shaded region in

the figure). While only a single explanation is possible for the training exa ple and domain

theory shown here, in general there may be multiple possible explanations. In such cases, any or

all of the explanations may be used. In the case of PROLOG-EBG, the explanation is generated

using a backward chaining search as performed by PROLOG. PROLOG, halts once it finds the

first valid proof.

For example, the explanation of Figure 2 refers to the Density of Objl, but not to its Owner.

Therefore, the hypothesis for SafeToStack(x,y) should include Density(x, 0.3), but not Owner(x,

Fred). By collecting just the features mentioned in the leaf nodes of the explanation in Figure 2

and substituting variables x and y for Objl and Obj2, we can form a general rule that is justified

by the domain theory:

SafeToStack(x, y) Volume(x, 2) ^ Density(x, 0.3) ^ Type(y, Endtable)

The body of the above rule includes each leaf node in the proof tree, except for the leaf nodes

"Equal(0.6, times(2,0.3)" and "LessThan(0.6,5)." We omit these two because they are by

definition always satisfied, independent of x and y.

The above rule constitutes a significant generalization of the training example, because it omits

many properties of the example (e.g., the Color of the two objects) that are irrelevant to the target

concept. PROLOG- EBG computes the most general rule that can be justified by the explanation,

by computing the weakest preimage of the explanation, defined as follows:

For example, the weakest preimage of the target concept SafeToStack(x,y), with respect to the

explanation from Table 1, is given by the body of the following rule. This is the most general

rule that can be justified by the explanation of Figure 2:

Notice this more general rule does not require the specific values for Volume and Density that

were required by the first rule. Instead, it states a more general constraint on the values of these

attributes. The below figure depicts weakest preimage of SafeToStack.

The Weakest Preimage of target concept w.r.t explanation is produced by regression. It works

iteratively through explanation first computing weakest preimage then weakest preimage of

resulting expression and so on. It terminates when it has completed iterating all over steps in

explanation and yields weakest condition of target concept.

REMARKS ON EXPLANATION-BASED LEARNING

• Unlike inductive methods, PROLOG-EBG produces justified general hypotheses by

using prior knowledge to analyze individual examples.

• The explanation of how the example satisfies the target concept determines which

example attributes are relevant: those mentioned by the explanation.

• The further analysis of the explanation, regressing the target concept to determine its

weakest preimage with respect to the explanation, allows deriving more general

constraints on the values of the relevant features.

• The generality of the learned Horn clauses will depend on the formulation of the domain

theory and on the sequence in which training examples are considered.

• PROLOG-EBG implicitly assumes that the domain theory is correct and complete. If the

domain theory is incorrect or incomplete, the resulting learned concept may also be

incorrect.

There are several related perspectives on explanation-based learning that help to understand its

capabilities and limitations.

➢ EBL as theory-guided generalization of examples. EBL uses its given domain theory to

generalize rationally from examples, distinguishing the relevant ex- ample attributes from

the irrelevant, thereby allowing it to avoid the bounds on sample complexity that apply to

purely inductive learning.

➢ EBL as example-guided reformulation of theories. The PROLOG-EBG algorithm can

be viewed as a method for reformulating the domain theory into a more operational

formby creating rules that (a) follow deductively from the domain theory, and (b) classify

the observed training examples in a single inference step. Thus, the learned rules can be

seen as a reformulation of the domain theory classifying instances of the target concept in

a single inference step.

➢ EBL as "just" restating what the learner already "knows. " In one sense, the learner

in our SafeToStack example begins with full knowledge of the Safe- ToStack concept.If

its initial domain theory is sufficient to explain any observed training examples, then it is

also sufficient to predict their classification in advance.

EXPLANATION-BASED

KNOWLEDGE
LEARNING OF SEARCH CONTROL

• The practical applicability of the PROLOG-EBG algorithm is restricted by its

requirement that the domain theory be correct and complete.

• This EBL can be used in search programs(ex: chess game).

• One system that employs explanationbased learning is to implement search is PRODIGY.

• PRODIGY is domain independent planning system that accepts the problem in terms of

state space S and operators O.

• It then solves the problem to find sequence of operators O that lead from initial state Si to

state that reach goal G.

• PRODIGY divides the

solutions to final one.
problem into sub problem and solves them and combines all

• For example, one target concept is "the set of states in which subgoal A should be solved

before subgoal B." An example of a rule learned by PRODIGY for this target concept in

a simple block-stacking problem domain is

The goal of block-staking problem is to stack the blocks so that they spell the word "universal."

PRODIGY would decompose this problem into several subgoals to be achieved. Notice the

above rule matches the subgoalsOn(U, N) and On(N, I), and recommends solving the subproblem

On(N, I) before solving On(U, N). The justification for this rule (and the explanation used by

PRODIGY to learn the rule) is that if we solve the subgoals in the reverse sequence, we will

encounter a conflict in which we must undo the solution to the On(U, N) subgoal in order to

achieve the other subgoal On(N, I).

PRODIGY learns by first encountering such a conflict, then explaining to itself the reason for this

conflict and creating a rule such as the one above.

The net effect is that PRODIGY uses domain-independent knowledge about possible subgoal

conflicts, together with domain-specific knowledge of specific operators (e.g., the fact that the

robot can pick up only one block at a time), to learn useful domain-specific planning rules such as

the one illustrated above.

Unit-V

Analytical Learning-1

Combing Inductive and Analytical Learning:

Motivation:

• two paradigms for machine learning: inductive learning and analytical learning.

• Purely analytical learning methods offer the advantage of generalizing more accurately

from less data by using prior knowledge to guide learning. However, they can be misled

when given incorrect or insufficient prior knowledge.

Eg: PROLOG-EBG, seek general hypotheses that fit prior knowledge while covering the

observed data.

• Purely inductive methods offer the advantage that they require no explicit prior knowledge

and learn regularities based solely on the training data. However, they can fail when given

insufficient training data, and can be misled by the implicit inductive bias they must adopt

in order to generalize beyond the observed data.

Eg : decision tree induction and neural network BACKPROPAGATION, seek general

hypotheses that fit the observed training data.

• Combining them offers the possibility of more powerful learning methods.

Differnces between Inductive Learning and Analytical Learning

Inductive Learning Analytical Learning

These methods seek general hypotheses that fit

the observed training data.

These methods seek general hypotheses that

fit prior knowledge while covering the

observed data.

These offer the advantage that they require no

explicit prior knowledge and learn regularities

based solely on the training data

These offer the advantage of generalizing

more accurately from less data by using prior

knowledge to guide learning.

The output hypothesis follows from statistical

arguments that the training sample is

The output hypothesis follows deductively

from the domain theory and training

sufficiently large that it is probably

representative of the underlying distribution of

example

examples.

The disadvantage is they can fail when given

insufficient training data, and can be misled by

the implicit inductive bias they must adopt in

order to generalize beyond the observed data

The disadvantage is they can be misled when

given incorrect or insufficient prior

knowledge.

These provide statistically justified hypotheses These provide logically justified hypotheses.

Inductive methods are Decision tree

,Backpropagation

Analytical methods are PROLOG-EBG

❖ The two approaches work well for different types of problems. By combining them we can

hope to devise a more general learning approach that covers a more broad range of learning

tasks. Fig1,a spectrum of learning problems that varies by the availability of prior

knowledge and training data. At one extreme, a large volume of training data is

available, but no prior knowledge. At the other extreme, strong prior knowledge is

available, but little training data. Most practical learning problems

between these two extremes of the spectrum.

lie somewhere

Fig 1 : A Spectrum of learning tasks

At the left extreme, no prior knowledge is available, and purely inductive learning methods with

high sample complexity are therefore necessary. At the rightmost extreme, a perfect domain

theory is available, enabling the use of purely analytical methods such as PROLOG-EBG. Most

practical problems lie somewhere between these two extremes

Some specific properties we would like from such a learning method include:

• Given no domain theory, it should learn at least as effectively as purely inductive

methods.

• Given a perfect domain theory, it should learn at least as effectively as purely analytical

methods.

• Given an imperfect domain theory and imperfect training data, it should combine the two

to outperform either purely inductive or purely analytical methods.

• It should accommodate an unknown level of error in the training data.

• It should accommodate an unknown level of error in the domain theory.

INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING

The Learning Problem

Given:

• A set of training examples D, possibly containing errors

• A domain theory B, possibly containing errors

• A space of candidate hypotheses H

Determine:

• A hypothesis that best fits the training examples and domain theory

Which hypothesis to consider?

 One which fits training data well

 One which fits domain theory well

errorD(h) is defined to be the proportion of examples from D that are misclassified by h. Let us

define the error errorB(h) of h with respect to a domain theory B to be the probability that h will

disagree with B on the classification of a randomly drawn instance. We

characterize the desired output hypothesis in terms of these errors.

can attempt to

We require hypothesis that could minimize some combined measures of hypothesis such as

At first instance it satisfies, it is not clear what values to assign to kDand kB to specify the relative

importance of fitting the data versus fitting the theory.

If we have poor theory and great deal of data the error w.r.t D weight more heavily and if we have

strong theory and noisy data the error w.r.t B weight more heavily.so the learner doesn’t know

about training data and domain theory to unclear these components.

So to weight these we use Bayes theorem. Bayes theorem describes how to compute the posterior

probability P(h/D) of hypothesis h given observed training data D.Bayes theorem computes this

posterior probability based on the observed data D, together with prior knowledge in the form of

P(h), P(D), and P(D/h).we can think of P(h), P(D), and P(D/h) as a form of background knowledge

or domain theory.Here we should choose hypothesis whose posterior probability is high. If P(h),

P(D), and P(D/h) these are not perfectly known then Bayes theorem alone does not prescribe how

to combine them with the observed data. Then, we have to assume prior probabilistic values for

P(h), P(D), and P(D/h).

Hypothesis space search:

We can characterize most learning methods as search algorithms by describing the hypothesis

space H they search, the initial hypothesis ho at which they begin their search, the set of search

operators 0 that define individual search steps, and the goal criterion G that specifies the search

objective.

three different methods are:

• Use prior knowledge to derive an initial hypothesis from which to begin the search.

In this approach the domain theory B is used to construct an initial hypothesis ho that is

consistent with B. A standard inductive method is then applied, starting with the initial

hypothesis ho.

• Use prior knowledge to alter the objective of the hypothesis space search. In this

approach, the goal criterion G is modified to require that the out- put hypothesis fits the

domain theory as well as the training examples.

• Use prior knowledge to alter the available search steps. In this approach, the set of

search operators 0 is altered by the domain theory.

USING PRIOR KNOWLEDGE TO INITIALIZE THE HYPOTHESIS

One approach to using prior knowledge is to initialize the hypothesis to perfectly fit the domain

theory, then inductively refine this initial hypothesis as needed to fit the training data. This

approach is used by the KBANN (Knowledge-Based Artificial Neural Network) algorithm to learn

artificial neural networks.

In KBANN, initial network is first constructed for every instance, the classification assigned by

the network is identical to that assigned by the domain theory. Backpropagation algorithm is

employed to adjust the weights of initial network as needed to fit training examples.

If the initial hypothesis is found to imperfectly classify the training examples, then it will be refined

inductively to improve its fit to the training examples (Backpropagation algorithm). If the domain

theory is correct, the initial hypothesis will correctly classify all the training examples.

The intuition behind KBANN is that even if the domain theory is only approximately correct,

initializing the network to fit this domain theory will give a better starting approximation to the

target function than initializing the network to random initial weights.

The KBANN Algorithm

It first initializes the hypothesis approach to using domain theories.It assumes a domain theory

represented by a set of propositional, nonrecursive Horn clauses.

The two stages of the KBANN algorithm are first to create an artificial neural network that

perfectly fits the domain theory and second to use the BACKPROPAGATION algorithm to

refine this initial network to fit the training examples

EXAMPLE:

Here each instance describes a physical object in terms of the material from which it is made,

whether it is light, etc. The task is to learn the target concept Cup defined over such physical

objects. The domain theory defines a Cup as an object that is Stable, Liftable, and an

OpenVessel. The domain theory also defines each of these three attributes in terms of more

primitive attributes and all those attributes describe the instances.

Table 1. describes a set of training examples and a do- main theory for the Cup target concept

Table 1. The Cup Learning Task

Here the domain theory is inconsistent because the domain theory fails to classify two and three

training examples. KBANN uses the domain theory and training examples together to learn the

target concept more accurately than it could from either alone.

1. In First stage, Initial network is constructed consistent with domain theory

2. KBANN follows the convention that a sigmoid output value greater than 0.5 is interpreted

as True and a value below 0.5 as False.

3. Each unit is therefore constructed so that its output will be greater than 0.5 just in those

cases where the corresponding Horn clause applies.

4. for each input corresponding to a non-negated antecedent,the weight is set to some positive

constant W. For each input corresponding to a negated antecedent, the weight is set to - W.

5. The threshold weight of the unit, wo is then set to -(n- .5) W, where n is the number of non-

negated antecedents.

When i/p values are 1 or 0 then weightedsum+ w0 will be +ve , if all antecedents are

satisfied.

6. Each sigmoid unit input is connected to the appropriate network input or to the output of

another sigmoid unit, to mirror the graph of dependencies among the corresponding

attributes in the domain theory. As a final step many additional inputs are added to each

threshold unit, with their weights set approximately to zero.

Fig 2. A Neural network equivalent to domain theory

The solid lines in the network of Figure 2 indicate unit inputs with weights of W, whereas the

lightly shaded lines indicate connections with initial weights near zero.

7. The second stage

BACKPROPAGATION
of KBANN uses the training examples and the

algorithm to refine the initial network weights, if the intial

network is not consistent with theory. If consistent no need of backpropagation.

8. But our example is not consistent so we perform backpropagation

Figure 3, with dark solid lines indicating the largest positive weights, dashed lines indicating the

largest negative weights, and light linesindicating negligible weights.

Fig 3. Result of inductively refined neural network.

REMARKS:

• The chief benefit of KBANN over purely inductive BACKPROPAGATION is that it

typically generalizes more accurately than BACKPROPAGATION when given an

approximately correct domain theory, especially when training data is scarce.

• Limitations of KBANN include the fact that it can accommodate only propositional

domain theories; that is, collections of variable-free Horn clauses. It is also possible for

KBANN to be misled when given highly inaccurate domain theories, so that its

generalization accuracy can deteriorate below the level of BACKPROPAGATION

USING PRIOR KNOWLEDGE TO ALTER THE SEARCH OBJECTIVE

• The above approach begins the gradient descent search with a hypothesis that perfectly

fits the domain theory, then perturbs this hypothesis as needed to maxi

training data.

ize the fit to the

• An alternative way of using prior knowledge is to incorporate it into the error criterion

minimized by gradient descent, so that the network must fit a combined function of the

training data and domain theory.

EBNN Algorithm

The EBNN (Explanation-Based Neural Network learning) algorithm (Mitchell and Thrun 1993a;

Thrun 1996) builds on the TANGENTPROP algorithm in two significant ways.

• First, instead of relying on the user to provide training derivatives, EBNN computes

training derivatives itself for each observed training example. These training derivatives

are calculated by explaining each training example in terms of a given domain theory, then

extracting training derivatives from this explanation. (how to select mue).

• Second, EBNN addresses the issue of how to weight the relative importance of the

inductive and analytical components of learning

Fig 4. Modified error function from tangent prop algorithm.

value of µ is chosen independently for each training example.

The inputs to EBNN include (1) a set of training examples of the form (xi, f (xi)) with no training

derivatives provided, and (2) a domain theory analogous to that used in explanation-based

learning and in KBANN, but represented by a set of previously trained neural networks rather than

a set of Horn clauses. The output of EBNN is a new neural network that approximates the target

function f.

To illustrate the type of domain theory used by EBNN, consider Figure . The top portion of this

figure depicts an EBNN domain theory for the target function Cup, with each rectangular block

representing a distinct neural network in the domain theory. Notice in this example there is one

network for each of the Horn clauses in the symbolic domain theory of Table 1. For example, the

network labeled Graspable takes as input the description of an instance and produces as output a

value indicating whether the object is graspable (EBNN typically repre- sents true propositions

by the value 0.8 and false propositions by the value 0.2). This network is analogous to the Horn

clause for Graspable given in Table 1. Some networks take the outputs of other networks as their

inputs (e.g., the right- most network labelled Cup takes its inputs from the outputs of the Stable,

Liftable, and OpenVessel networks). Thus, the networks that make up the domain theory can be

chained together to infer the target function value for the input instance, just as Horn clauses might

be chained together for this purpose. In general, these domain theory networks may be provided

to the learner by some external source, or they may be the result of previous learning by the same

system. EBNN makes use of these domain theory networks to learn the newtarget function. It does

not alter the domain theory networks during this process.

The goal of EBNN is to learn a new neural network to describe the target function. We will refer

to this new network as the target network. In the example of Figure, the target network Cup,,,,,,

shown at the bottom of the figure takes as input the description of an arbitrary instance and outputs

a value indicating whether the object is a Cup.EBNN algorithm uses a domain theory expressed

as a set of previously learned neural networks, together with a set of training examples, to train

its output hypothesis

USING PRIOR KNOWLEDGE TO AUGMENT SEARCH OPERATORS

In this section we consider a third way of using prior knowledge to alter the hypothesis space

search: using it to alter the set of operators that define legal steps in the search through the

hypothesis space. This approach is followed by systems such as FOCL

The FOCL Algorithm

• FOCL is an extension of the purely inductive FOIL system.It also employees sequential

covering algorithm (generic to specific search)

• Both FOIL and FOCL learn a set of first-order Horn clauses to cover the observed

training examples

• Difference is FOCL considers Domain Theory.

The solid edges in the search tree of Figure 6 show the general-to-specific search steps considered

in a typical search by FOIL. The dashed edge in the search tree of Figure 6 denotes an additional

candidate specialization that is considered by FOCL and based on the domain theory.

To describe operation FOCL operation, we must know about operational and non operational

literals .operational literals are the 12 attributes describing the training sample where asnon

operational are intermediate feature that occurs in domain theory.

For example in fig 6 ,One kind adds a single new literal (solid lines.in the figure). A second kind

of operator specializes the rule by adding a set of literals that constitute logically sufficient

conditions for the target concept, according to the domain theory (dashed lines in the figure).

Fig 5. Cup target concept (Training examples and domain theory)

Fig 6. Hypothesis space search in foil

FOCL expands its current hypothesis h using the following two operators: ,

1. For each operational literal that is not part of h, create a specialization of h by adding this single

literal to the preconditions. This is also the method used by FOIL to generate candidate successors.

he solid arrows in Figure 6 denote this type of specialization.

2. Create an operational, logically sufficient condition for the target concept according to the

domain theory. Add this set of literals to the current preconditions of h. Finally, prune the

preconditions of h by removing any literals that are unnecessary according to the training data.

The dashed arrow in Figure 6 denotes this type of specialization.

• FOCL first selects one domain theory clause whose post condidtion (head) matches the

target concept. If there are more such clauses then it selects whose preconditions have

highest information.

• For example in the above figure Cup Stable, Liftable, Openvessel

• Now each non operational literal is replaced with its sufficient i.e. instead of Stable we

replace BottomIsFlat similarly we do for all… this process is unfolding

• Then it looks like BottomIsFlat , HasHandle, Light, HasConcavity ,

ConcavityPointsUp

• As a final step in generating the candidate specialization, this sufficient condition is pruned.

For each literal in the expression, the literal is removed unless its removal reduces

classification accuracy over the training examples. Pruning (removing) the literal

HasHandleresults in improved performance.

• BottomZsFlat , Light, HasConcavity , ConcavityPointsUp

this hypothesis is the result of the search step shown by the dashed arrow in Figure

• Once candidate specializations of the current hypothesis have been gener- ated, using both

of the two operations above, the candidate with highest information gain is selected.

FOCL learns Horn clauses of the form c 0i ^ 0b ^ 0f

where c is the target concept, 0i is an initial conjunction of operational literals added one at a time

by the first syntactic operator, 0b is a conjunction of operational literals added in a single step

based on the domain theory, and 0f is a final conjunction of operational literals added one at a time

by the first syntactic operator.

REINFORCEMENT LEARNING

Each time the agent performs an action in its environment, a trainer may provide a reward or

penalty to indicate the desirability of the resulting state. For example, when training an agent to

play a game the trainer might provide a positive reward when the game is won, negative reward

when it is lost, and zero reward in all other states. The task of the agent is to learn from this

indirect, delayed reward, to choose sequences of actions that produce the greatest cumulative

reward.

• These algorithms are

optimization problems.
dynamic programming algorithms frequently used to solve

• For example, a mobile robot may have sensors such as a camera and sonars, and actions

such as "move forward" and "turn." Its task is to learn a control strategy, or policy, for

choosing actions that achieve its goals.

Fig 7. Reinforcement learning

Figure 7 tells, An agent interacting with its environment. The agent exists in an environment

described by some set of possible states S. It can perform any of a set of possible actions A. Each

time it performs an action at in some state st the agent receives a real-valued reward rt, that

indicates the immediate value of this state-action transition. This produces a sequence of states

si, actions ai, and immediate rewards ri as shown in the figure. The agent's task is to learn a control

policy, π : S A, that maximizes the expected sum of these rewards, with future rewards discounted

exponentially by their delay.

• One of best application of reinforcement learning is:

Tesauro (1995) describes the TD-GAMMON program, which has used reinforcement

learning to become a world-class backgammon player. This program, after training on 1.5

million self-generated games, is now considered nearly equal to the best human players in

the world and has played competitively against top-ranked players in international

backgammon tournaments.

Reinforcement learning problem differs from other function approximation tasks

• Delayed reward: The trainer provides only a sequence of immediate reward values as the

agent executes its sequence of actions. The agent, therefore, faces the problem of temporal

credit assignment: determining which of the actions in its sequence are to be credited with

producing the eventual rewards.

• Exploration: The learner faces a tradeoff in choosing whether to favor exploration of

unknown states and actions (to gather new information), or exploitation of states and

actions that it has already learned will yield high reward (to maximize its cumulative

reward).

• Partially observable states. Although it is convenient to assume that the agent's sensors

can perceive the entire state of the environment at each time step, in many practical

situations sensors provide only partial information.

For example, a robot with a forward-pointing camera cannot see what isbehind it. In such

cases, it may be necessary for the agent to consider its previous observations together

with its current sensor data when choosing actions, and the best policy may be one that

chooses actions specifically to improve the observability of the environment

• Life-long learning. Unlike isolated function approximation tasks, robot learning often

requires that the robot learn several related tasks within the same environment, using the

same sensors.

For example, a mobile robot may need to learn how to dock on its battery charger, how to

navigate through nar- row corridors, and how to pick up output from laser printers. This

setting raises the possibility of using previously obtained experience or knowledge to

reduce sample complexity when learning new tasks.

Learning Task

• In a Markov decision process (MDP) the agent can perceive a set S of distinct states of its

environment and has a set A of actions that it can perform.

• At each discrete time step t, the agent senses the current state st, chooses a current action

‘a’ and performs it.

• The environment responds by giving the agent a reward r = r (st, a,) and by producing the

succeeding state st+1 = f(st,at).

• Here the functions f and r are part of the environment and are not necessarily known to

the agent.

• In MDP, f(st,at) and r(st,at) depend on current state or action ,not on earlier state or

action.

• The task of the agent is to learn a policy, π : S A, for selecting its next action at, based

on the current observed statest.

• The policy which maximizes the above value is optimal policy i.e. which produces the

greatest possible cumulative reward

Here we illustrate above with an example:

1. The six grid squares in this diagram represent six possible statesfor the agent.

2. Each arrow in the diagram represents a possible action the agent can take to move from

one state to another.

3. The immediate reward in this particular environment is defined to be zero for all state-

action transitions except for those leading into the state labeled G.

4. The state G is goal state , if the agent enters into this state remains in this state and can

receive the reward and we also call G as absorbing state.

5. Once all states, actions, immediate rewards are defined then we choose value for discount

factorγ

6. Here we assume γ=0.9. The value of V* for this state is 100 because the optimal policy in

this state selects the "move up" action that receives immediate reward 100. Thereafter,

the agent will remain in the absorbing state and receive no further rewards.

7. Similarly, the value of V* for the bottom center state is 90. This is because the optimal

policy will move the agent from this state to the rightthen upward (generating an immediate

reward of 100). Thus, the discounted future reward from the bottom center state is 0+ γ

(100) + γ2(0) + γ3(0) + =90 (policy that direct along shortest path to

G)

Fig 8. A simple deterministic world to explain basic of Q-Learning

Q LEARNING:

It is difficult to learn the function π* : S A directly, because the available training data does not

provide training examples of the form (s, a). Intsead the training information is the sequence of

immediate rewards r(si, ai) for i = 0, 1,2, This kind of information is easier to learn

evaluation function defined over states or actions that implement optimal policy.

The agent can acquire the optimal policy by learning V*, provided it has perfect knowledge of

the immediate reward function r and the state transition function δ. When the agent knows the

functions r and δ used by the environment to respond to its actions, it can then use Equation to

calculate the optimal action for any state s.

 (1)

Only when we have the perfect knowledge on δ and r then by using the equation we can lear

optimal policy. But incase if we donnot know the values we cant evaluate equation. So we go for

Q Equation.

Q Equation:

Let us define the evaluation function Q(s, a) so that its value is the maximum dis- counted

cumulative reward that can be achieved starting from state s and applying action a as the first

action.

 (2)

Q(s, a) is exactly the quantity that is maximized in Equation (stated in Q Learning) in order to

choose the optimal action a in state s. Therefore, we can rewrite that Equation in terms of Q(s, a)

as

 (3)

Now if the agent learns Q function even if he is not having knowledge of δ and r we can find the

optimal policy.

Algorithm for Q-Learning:

relationship between Q and V*,V*(S) = max Q(s, a')

a'

(4)

now rewriting the equation (2)

To describe the algorithm, we

(5)

will use the symbol Q^, of the actual Q function. The agent

repeatedly observes its current state s, chooses some action a, executes this action, then observes

the resulting reward r’ = r(s, a) and the new state s' =δ (s, a). It then updates the table entry for

Q^(s, a) following each such transition, according to the rule:

Example:

To illustrate the operation of the Q learning algorithm, consider a single action taken by an agent,

and the corresponding refinement to Q^ shown in Figure. In this example, the agent moves one

cell to the right in its grid world and receives an immediate reward of zero for this transition. It

then applies the training rule of Equation (5) to refine its estimate Q^ for the state-action transition

it just executed. According to the training rule, the new Q^ estimate for this transition is the sum

of the received reward (zero) and the highest Q^ value associated with the resulting state (100),

discounted by y (0.9). Each time the agent moves forward from an old state to a new one, Q

learning propagates Q^ estimates backward from the new state to the old. At the same time, the

immediate reward received by the agent for the transition is used to augment these propagated

values of Q^.

Consider applying this algorithm to above mentioned example in Learning and then training

consists series of episodes. when thisepisodes reach end the agent is transported to a new,

randomly chosen, initial state for the next episode.

NONDETERMINISTIC REWARDS AND ACTIONS

• Above we considered Q-Learning as deterministic, now we take as nondeterministic in

which the reward function r(s, a) and state transition function f(s, a) may have probabilistic

outcomes.

• In such cases, the functions delta(s, a) and r(s, a) can be viewed as first producing a

probability distribution over outcomes based on s and a, and then drawing an outcome at

random according to this distribution

• When these probabilistic outcomes doesnot depend on previous state or action then we call

that as nondeterministic Markov decision process.

• Now we extend the Q-Learning deterministic case to handle nondeterministic MDPs.

• In the nondeterministic case we must first restate the objective of the learner to take that

outcomes are no longer deterministic.

• The generalization is to redefine the value of policy to bethe expected value (over these

nondeterministic outcomes) of the discounted cumulative reward received by applying this

policy

Next we generalize our earlier definition of Q from Equation, again by taking its expected

value.

• To summarize, we have simply redefined Q(s, a) in the nondeterministic case to be the

expected value of its previously defined quantity for the deterministic case.

TEMPORAL DIFFERENCE LEARNING

• Q learning is a special case of a general class of temporal difference algorithms

that learn by reducing discrepancies between estimates made by the agent at

different times.

• Temporal difference (TD) learning refers to a class of model-free

reinforcement learning methods which learn by bootstrapping from the current

estimate of the value function.

GENERALIZING FROM EXAMPLES

The algorithms we discussed perform a kind of rote learning and make no attempt to

estimate the Q value for unseen state-action pairs by generalizing from those that have

been seen.

It is easy to incorporate function approximation algorithms such as BACK-

PROPAGATION into the Q learning algorithm, by substituting a neural network

for the lookup table and using each Q^(s, a) update as a training example.

In practice, a number of successful reinforcement learning systems have been

developed by incorporating such function approximation algorithms in place of

the lookup table. Tesauro's successful TD-GAMMON program for playing

backgammon used a neural network and the BACKPROPAGATION algorithm

together with a TD(λ) training rule

	Unit -IV
	So, how do we implement LEARN_ONE_RULE?
	Variations
	Terminology
	First-Order Horn Clauses:
	Learning sets of first-order rules: FOIL
	Induction as inverted Deduction
	Inverting Resolution
	First-Order Resolution
	Inverting Resolution: First-order Case
	Progol

	Analytical Learning
	Introduction
	Example 1:
	Inductive and Analytical Learning Problems

	LEARNING WITH PERFECT DOMAIN THEORIES: PROLOG-EBG
	PROLOG-EBG Algorithm:
	SafeToStack(x, y) Volume(x, 2) ^ Density(x, 0.3) ^ Type(y, Endtable)

	REMARKS ON EXPLANATION-BASED LEARNING
	EXPLANATION-BASED KNOWLEDGE
	CONTROL

	Unit-V
	Analytical Learning-1
	Combing Inductive and Analytical Learning:
	Motivation:
	Differnces between Inductive Learning and Analytical Learning
	Some specific properties we would like from such a learning method include:
	INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING
	Determine:
	Hypothesis space search:

	USING PRIOR KNOWLEDGE TO INITIALIZE THE HYPOTHESIS
	The KBANN Algorithm
	EXAMPLE:
	REMARKS:

	USING PRIOR KNOWLEDGE TO ALTER THE SEARCH OBJECTIVE
	EBNN Algorithm

	USING PRIOR KNOWLEDGE TO AUGMENT SEARCH OPERATORS
	The FOCL Algorithm
	• BottomZsFlat , Light, HasConcavity , ConcavityPointsUp

	REINFORCEMENT LEARNING
	Reinforcement learning problem differs from other function approximation tasks
	Q LEARNING:
	Q Equation:
	Example:

	NONDETERMINISTIC REWARDS AND ACTIONS
	TEMPORAL DIFFERENCE LEARNING
	GENERALIZING FROM EXAMPLES

