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Prerequisites: 

• Data Structures 

• Knowledge on statistical methods 

Course Objectives: 

• This course explains machine learning techniques such as decision tree learning, 

Bayesian 

learning etc. 

• To understand computational learning theory. 

• To study the pattern comparison techniques. 

Course Outcomes: 

• Understand the concepts of computational intelligence like machine learning 

• Ability to get the skill to apply machine learning techniques to address the real time 

problems 

in different areas 

• Understand the Neural Networks and its usage in machine learning application. 

UNIT - I 

Introduction - Well-posed learning problems, designing a learning system, Perspectives and 

issues in machine learning 

Concept learning and the general to specific ordering – introduction, a concept learning task, 

concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and 

the candidate elimination algorithm, remarks on version spaces and candidate elimination, 

inductive bias. 

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for 

decision tree learning, the basic decision tree learning algorithm, hypothesis space search in 

decision tree learning, inductive bias in decision tree learning, issues in decision tree learning. 

 

UNIT - II 

Artificial Neural Networks-1– Introduction, neural network representation, appropriate 

problems for neural network learning, perceptions, multilayer networks and the back-

propagation algorithm. 

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative 

example: face recognition, advanced topics in artificial neural networks. 

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling 

theory, a general approach for deriving confidence intervals, difference in error of two 

hypotheses, comparing learning algorithms. 

 

UNIT - III 

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, 

Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for 

predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs 

algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief 

networks, the EM algorithm. 

Computational learning theory – Introduction, probably learning an approximately correct 

hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite 

hypothesis spaces, the mistake bound model of learning. 



Instance-Based Learning- Introduction, k-nearest neighbor algorithm, locally weighted 

regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning. 

 

UNIT- IV 

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis 

space search, genetic programming, models of evolution and learning, parallelizing genetic 

algorithms. 

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: 

summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as 

inverted deduction, inverting resolution. 

Reinforcement Learning – Introduction, the learning task, Q–learning, non-deterministic, 

rewards and actions, temporal difference learning, generalizing from examples, relationship to 

dynamic programming. 

 

UNIT - V 

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, 

remarks on explanation-based learning, explanation-based learning of search control 

knowledge. 

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior 

knowledge to augment search operators. 

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches 

to learning, using prior knowledge to initialize the hypothesis. 

 

TEXT BOOK: 

Machine Learning – Tom M. Mitchell, - MGH 

 

REFERENCE BOOK: 

Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit-I 

 
Well Posed Problems: 

 

Definition: A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E. 

Applications of Machine Learning 

 
Learning to recognize spoken words. All of the most successful speech recognition systems 

employ machine learning in some form. For example, the SPHINX system learns speaker- specific 

strategies for recognizing the primitive sounds (phonemes) and words from the observed 

speech signal. Neural network learning methods (e.g., Waibel et al. 1989) and methods for 

learning hidden Markov models (e.g., Lee 1989) are effective for automatically customizing to, 

individual speakers, vocabularies, microphone characteristics, background noise, etc. Similar 

techniques have potential applications in many signal-interpretation problems. 

Learning to drive an autonomous vehicle. Machine learning methods have been used to train 

computer-controlled vehicles to steer correctly when driving on a variety of road types. For 

example, the ALVINN system (Pomerleau 1989) has used its learned strategies to drive 

unassisted at 70 miles per hour for 90 miles on public highways among other cars. Similar 

techniques have possible applications in many sensor-based control problems. 

Learning to classify new astronomical structures. Machine learning methods have been 

applied to a variety of large databases to learn general regularities implicit in the data. For 

example, decision tree learning algorithms have been used by NASA to learn how to classify 

celestial objects from the second Palomar Observatory Sky Survey (Fayyad et al. 1995). This 

system is now used to automatically classify all objects in the Sky Survey, which consists of three 

terrabytes of image data. 

Learning to play world-class backgammon. The most successful computer programs for playing 

games such as backgammon are based on machine learning algorithms. For example, 



the world's top computer program for backgammon, TD-GAMMON (Tesauro 1992, 1995). 

learned its strategy by playing over one million practice games against itself. It now plays at a 

level competitive with the human world champion. Similar techniques have applications in 

many practical problems where very large search spaces must be examined efficiently. 

A checkers learning problem: 

 
Task T: playing checkers 

 
Performance measure P: percent of games won against opponents 

 
Training experience E: playing practice games against itself We can specify many learning 

problems in this fashion, such as learning to recognize handwritten words, or learning to 

drive a robotic automobile autonomously. 

A handwriting recognition learning problem: 

 
Task T: recognizing and classifying handwritten words within images 

Performance measure P: percent of words correctly classified 

Training experience E: a database of handwritten words with given classifications 

 
A robot driving learning problem: 

 
Task T: driving on public four-lane highways using vision sensors 

 
Performance measure P: average distance travelled before an error (as judged by human 

overseer) 

Training experience E: a sequence of images and steering commands recorded while 

observing a human driver. 

Designing a Learning System: 

 



Choosing the Training Experience: 

 
The first design choice we face is to choose the type of training experience from which our 

system will learn. The type of training experience available can have a significant impact on 

success or failure of the learner. One key attribute is whether the training experience provides 

direct or indirect feedback regarding the choices made by the performance system. For 

example, in learning to play checkers, the system might learn from direct training examples 

consisting of individual checkers board states and the correct move for each. 

In order to complete the design of the learning system, we must now choose 

 
1. the exact type of knowledge to be learned 

 
2. a representation for this target knowledge 

 
3. a learning mechanism 

 
Choosing the Target Function: 

 
The next design choice is to determine exactly what type of knowledge will be learned and 

how this will be used by the performance program. Let us begin with a checkers-playing program 

that can generate the legal moves from any board state. The program needs only to learn how 

to choose the best move from among these legal moves. 

Choosing a Representation for the Target Function: 

 
X1: the number of black pieces on the 

board x2: the number of red pieces on the 

board x3: the number of black kings on the 

board x4: the number of red kings on the 

board 

x5: the number of black pieces threatened by red (i.e., which can be captured on red's 

next turn) 

X6: the number of red pieces threatened by black 



 

where wo through w6 are numerical coefficients, or weights, to be chosen by the learning 

algorithm. 

 

 
 

Partial design of a checkers learning program: 

 

Task T: playing checkers 

 
Performance measure P: percent of games won in the world tournament 

 

Training experience E: games played against itself 

 

Target function: V:Board R 

Target function 

representation 

V(b)=w0+w1x1+w2x2+w3x3+w4x4+w5x5+w6x6 

 

Choosing a Function Approximation Algorithm 

 

In order to learn the target function f we require a set of training examples, each describing 

a specific board state b and the training value Vtrain(b) for b. 

 

ESTIMATING TRAINING VALUES 

 

Rule for estimating training values. 

 

Vtrain (b) V(Successor(b)) 

ADJUSTING THE WEIGHTS 

The Critic takes as input the history or trace of the game and produces as output a set of training 

examples of the target function. As shown in the diagram, each training example in this case 



corresponds to some game state in the trace, along with an estimate Vtrain, of the target 

function value for this example. 

The Generalizer takes as input the training examples and produces an output hypothesis that 

is its estimate of the target function. It generalizes from the specific training examples, 

hypothesizing a general function that covers these examples and other cases beyond the 

training examples. 

The Experiment Generator takes as input the current hypothesis (currently learned 

function) and outputs a new problem (i.e., initial board state) for the Performance System to 

explore. Its role is to pick new practice problems that will maximize the learning rate of the 

overall system. 

 

 
Fig: Final Design of Checkers Learning Problem 



 
 

Fig: Summary of choices in designing checkers learning problem. 

 

 

 

PERSPECTIVES AND ISSUES IN MACHINE LEARNING: 

 

One useful perspective on machine learning is that it involves searching a very large space of 

possible hypotheses to determine one that best fits the observed data and any prior 

knowledge held by the learner. For example, consider the space of hypotheses that could in 

principle be output by the above checkers learner. This hypothesis space consists of all 

evaluation functions that can be represented by some choice of values for the weights wo 

through w6. 

The learner's task is thus to search through this vast space to locate the hypothesis that is 

most consistent with the available training examples. The LMS algorithm for fitting weights 

achieves this goal by iteratively tuning the weights, adding a correction to each weight each  



This algorithm works well when the hypothesis representation considered by the learner 

defines a continuously parameterized space of potential hypotheses. 

Issues in Machine Learning 

 
• What algorithms exist for learning general target functions from specific training 

examples? In what settings will particular algorithms converge to the desired function, 

given sufficient training data? Which algorithms perform best for which types of 

problems and representations? 

• How much training data is sufficient? What general bounds can be found to relate the 

confidence in learned hypotheses to the amount of training experience and the character 

of the learner's hypothesis space? 

• When and how can prior knowledge held by the learner guide the process of generalizing 

from examples? Can prior knowledge be helpful even when it is only approximately 

correct? 

• What is the best strategy for choosing a useful next training experience, and how does the 

choice of this strategy alter the complexity of the learning problem? 

• What is the best way to reduce the learning task to one or more function approximation 

problems? Put another way, what specific functions should the system attempt to learn? 

Can this process itself be automated? 

• How can the learner automatically alter its representation to improve its ability to 

represent and learn the target function? 

 

 
 

Concept Learning: 

 
Concept learning: Inferring a boolean-valued function from training examples of its input 

and output. 

A CONCEPT LEARNING TASK: 

 
What hypothesis representation shall we provide to the learner in this case? Let us begin by 

considering a simple representation in which each hypothesis consists of a conjunction of 

constraints on the instance attributes. In particular, let each hypothesis be a vector of six 

constraints, specifying the values of the six attributes Sky, AirTemp, Humidity, Wind, Water, and 

Forecast. For each attribute, the hypothesis will either 



indicate by a "?' that any value is acceptable for this attribute, 

 

specify a single required value (e.g., Warm) for the attribute, or 

 

indicate by a "θ" that no value is acceptable. 

 

The inductive learning hypothesis. Any hypothesis found to approximate the target function 

well over a sufficiently large set of training examples will also approximate the target function 

well over other unobserved examples. 

CONCEPT LEARNING AS SEARCH Concept learning can be viewed as the task of 

searching through a large space of hypotheses implicitly defined by the hypothesis 

representation. The goal of this search is to find the hypothesis that best fits the training 

examples. It is important to note that by selecting a hypothesis representation, the designer of 

the learning algorithm implicitly defines the space of all hypotheses that the program can ever 

represent and therefore can ever learn. 

General-to-Specific Ordering   of   Hypotheses   Many   algorithms   for   concept   learning 

organize the search through the hypothesis space by relying on a very useful structure that 

exists for any concept learning problem: a general-to-specific ordering of hypotheses. By taking 

advantage of this naturally occurring structure over the hypothesis space, we can design 

learning algorithms that exhaustively search even infinite hypothesis spaces without explicitly 

enumerating every hypothesis. 

To illustrate the general-to-specific ordering, consider the two hypotheses 

 

h1 = (Sunny, ?, ?, Strong, ?, ?) 

 
h2 = (Sunny, ?, ?, ?, ?, ?) 

 
Now consider the sets of instances that are classified positive by hl and by h2. Because h2 

imposes fewer constraints on the instance, it classifies more instances as positive. In fact, any 

instance classified positive by hl will also be classified positive by h2. Therefore, we say that 

h2 is more general than hl. 



Definition: Let hj and hk be boolean-valued functions defined over X. Then hj is more general-

than-or-equal-to hk (written hj >= hk) if and only if 

 



FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS: 

 

 
Fig: Find-S Algorithm 

 

 

 

VERSION SPACES AND THE CANDIDATE-ELIMINATION ALGORITHM: 

 

The CANDIDATE-ELIMINATION algorithm finds all describable hypotheses that are consistent 

with the observed training examples. In order to define this algorithm precisely, we begin 

with a few basic definitions. First, let us say that a hypothesis is consistent with the training 

examples if it correctly classifies these examples. 

 

 

 



 
 

 

CANDIDATE-ELIMINATION Learning Algorithm: 

 



REMARKS ON VERSION SPACES AND CANDIDATE-ELIMINATION ALGORITHM: 

Will the CANDIDATE-ELIMINATION Algorithm Converge to the Correct Hypothesis? 

The version space learned by the CANDIDATE-ELIMINATION algorithm will con- verge toward 

the hypothesis that correctly describes the target concept, provided (1) there are no errors in 

the training examples, and (2) there is some hypothesis in H that correctly describes the target 

concept. 

What Training Example Should the Learner Request Next? Up to this point we have assumed 

that training examples are provided to the learner by some external teacher. Suppose instead 

that the learner is allowed to conduct experiments in which it chooses the next instance, then 

obtains the correct classification for this instance from an external oracle (e.g., nature or a 

teacher). 

How Can Partially Learned Concepts Be Used? Suppose that no addit onal training 

examples are available beyond the four in our example above, but that the learner is now 

required to classify new instances that it has not yet observed. Even though the version space 

still contains multiple hypotheses, indicating that the target concept has not yet been fully 

learned, it is possible to classify certain examples with the same degree of confidence as if 

the target concept had been uniquely identified. 

INDUCTIVE BIAS: 

 

 

Inductive bias of CANDIDATE-ELIMINATION algorithm. The target contained in 

the given hypothesis space H. 

concept c is 



 



Module 2: Decision Tree Learning and ANN  

 

Decision tree learning is a method for approximating discrete-valued target functions, in 

which the learned function is r presented by a decision tree. Learned trees can also be re- 

represented as sets of if-then rules to improve human readability. These learning methods are 

among the most popular of inductive inference algorithms and have been successfully applied 

to a broad range of tasks from learning to diagnose medical cases to learning to assess credit 

risk of loan applicants. 

DECISION TREE REPRESENTATION 

 

 

Figure illustrates a typical learned decision tree. This decision tree clas- sifies Saturday mornings 

according to whether they are suitable for playing tennis. For example, the instance (Outlook = 

Sunny, Temperature = Hot, Humidity = High, Wind = Strong) would be sorted down the leftmost 

branch of this decision tree and would therefore be classified as a negative instance (i.e., the 

tree predicts that PlayTennis = no). 

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING: 

 

• Instances are represented by attribute-value pairs. Instances are described by a fixed set 

of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for 

decision tree learning is when each attribute takes on a small number of disjoint 



possible values (e.g., Hot, Mild, Cold). However, extensions to the basic algorithm 

allow handling real-valued attributes as well (e.g., representing 

numerically). 

Temperature 

• The target function has discrete output values. The decision tree in Figure 3.1 assigns 

a boolean classification (e.g., yes or no) to each example. Decision tree methods 

easily extend to learning functions with more than two possible output values. A more 

substantial extension allows learning target functions with real-valued outputs, though 

the application of decision trees in this setting is less common. 

• Disjunctive descriptions may be required. As noted above, decision trees naturally 

represent disjunctive expressions. 

• The training data may contain errors. Decision tree learning methods are robust to errors, 

both errors in classifications of the training examples and errors in the attribute values 

that describe these examples. 

• The training data may contain missing attribute values. Decision tree meth- ods can be 

used even when some training examples have unknown values (e.g., if the Humidity 

of the day is known for only some of the training examples). 

 

THE BASIC DECISION TREE LEARNING ALGORITHM 

 

ENTROPY MEASURES   HOMOGENEITY   OF   EXAMPLES   In   order   to   define 

information gain precisely, we begin by defining a measure com- monly used in information 

theory, called entropy, that characterizes the (im)purity of an arbitrary collection of examples. 

Given a collection S, containing positive and negative examples of some target concept, the 

entropy of S relative to this boolean classification is 

 

 
INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY 

 



 
 

HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING: 

 

As with other inductive learning methods, ID3 can be characterized as searching a space of 

hypotheses for one that fits the training examples. The hypothesis space searched by ID3 is 

the set of possible decision trees. ID3 performs a simple-to- complex, hill-climbing search 

through this hypothesis space, beginning with the empty tree, then considering progressively 

more elaborate hypotheses in search of a decision tree that correctly classifies the training 

data. 

ID3's hypothesis space of all decision trees is a complete space of finite discrete-valued 

functions, relative to the available attributes. Because every finite discrete-valued function 

can be represented by some decision tree, ID3 avoids one of the major risks of methods that 

search incomplete 

hypothesis 

spaces (such as methods that consider 

only 

conjunctive 

hypotheses): that the hypothesis space might not contain the target function. 

 

ID3 in its pure form performs no backtracking in its search. Once it selects an attribute to test 

at a particular level in the tree, it never backtracks to reconsider this choice.ID3 uses all training 

examples at each step in the search to make statistically based decisions regarding how to  



ELIMINATION). One advantage of using statistical properties of all the examples (e.g., 

information gain) is that the resulting search is much less sensitive to errors in individual training 

examples. 

INDUCTIVE BIAS IN DECISION TREE LEARNING: 

 
Given a collection of training examples, there are typically many decision trees consistent 

with these examples. Describing the inductive bias of ID3 there- fore consists of describing 

the basis by which it chooses one of these consistent hypotheses over the others. Which of 

these decision trees does ID3 choose? It chooses the first acceptable tree it encounters in its 

simple-to-complex, hill- climbing search through the space of possible trees. Roughly speaking, 

then, the ID3 search strategy (a) selects in favour of shorter trees over longer ones, and (b) 

selects trees that place the attributes with highest information gain closest to the root. Because 

of the subtle interaction between the attribute selection heuristic used by ID3 and the particular 

training examples it encounters, it is difficult to characterize precisely the inductive bias 

exhibited by ID3. However, we can approximately characterize its bias as a preference for 

short decision trees over complex trees. Approximate inductive bias of ID3: Shorter trees are 

preferred over larger trees. 

ID3 searches a complete hypothesis space (i.e., one capable of expressing any finite discrete- 

valued function). It searches incompletely through this space, from simple to complex 

hypotheses, until its termination condition is met (e.g., until it finds a hypothesis consistent 

with the data). Its inductive bias is solely a consequence of the ordering of hypotheses by its 

search strategy. Its hypothesis space introduces no additional bias. 

Occam's razor: Prefer the simplest hypothesis that fits the data. 

 
ISSUES IN DECISION TREE LEARNING: 

 
• Avoiding Over fitting the Data 

• REDUCED ERROR PRUNING 

• RULE POST-PRUNING 

• Incorporating Continuous-Valued Attributes 

• Alternative Measures for Selecting Attributes 

• Handling Training Examples with Missing Attribute Values 

• Handling Attributes with Differing Costs 



Unit-II 

Artificial Neural Networks: 

 

Biological Motivation: 

 
The study of artificial neural networks (ANNs) has been inspired in part by the observation 

that biological learning systems are built of very complex webs of interconnected neurons. 

In rough analogy, artificial neural networks are built out of a densely interconnected set of 

simple units, where each unit takes a number of real-valued inputs (possibly the outputs of 

other units) and produces a single real-valued output. 

NEURAL NETWORK REPRESENTATIONS 

 

 
Problems for Neural Network Learning: 

 
• Instances are represented by many attribute-value pairs. The target function to be 

learned is defined over instances that can be described by a vector of predefined 

features, such as the pixel values in the ALVINN example. These input attributes may 

be highly correlated or independent of one another. Input values can be any real 

values. 

• The target function output may be discrete-valued, real-valued, or a vector of several 

real- or discrete-valued attributes. 



• The training examples may contain errors. ANN learning methods are quite robust 

to noise in the training data. 

• Long training times are acceptable. Network training algorithms typically require 

longer training times than, say, decision tree learning algorithms. Training times can 

range from a few seconds to many hours, depending on factors such as the number of 

weights in the network, the number of training examples considered, and the settings 

of various learning algorithm parameters. 

• Fast evaluation of the learned target function may be required. Although ANN 

learning times are relatively long, evaluating the learned network, in order to apply 

it to a subsequent instance, is typically very fast. 

• The ability of humans to understand the learned target function is ot important. 

The weights learned by neural networks are often difficult for humans to interpret. 

Learned neural networks are less easily communicated to humans than learned 

rules. 

PERCEPTRONS One type of ANN system is based on a unit called a perceptron. 

 

A perceptron takes a vector of real-valued inputs, calculates a linear combination of these 

inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise. More 

precisely, given inputs xl through x,, the output o(x1, . . . , x,) computed by the perceptron is 

 

 



The Perceptron Training Rule: 

 

One way to learn an acceptable weight vector is to begin with random weights, then 

iteratively apply the perceptron to each training example, modify- ing the perceptron weights 

whenever it misclassifies an example. This process is repeated, iterating through the training 

examples as many times as needed until the perceptron classifies all training examples 

correctly. Weights are modified at each step according to the perceptron training rule, which 

revises the weight wi associated with input xi according to the rule 

 

 
Here t is the target output for the current training example, o is the output generated by the 

perceptron, and η is a positive constant called the learning rate. 

Gradient Descent Training Rule 

 

 
MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM 

 

Single perceptrons can only express linear decision surfaces. In contrast, the kind of 

multilayer networks learned by the BACKPROPAGATION algorithm are capable of expressing a 

rich variety of nonlinear decision surfaces. 



What we need is a unit whose output is a nonlinear function of its inputs, but whose output is 

also a differentiable function of its inputs. One solution is the sigmoid unit-a unit very much like 

a perceptron, but based on a smoothed, differentiable threshold function. 

 

 
Fig: Sigmoid Threshold Unit 

 

More precisely, the sigmoid unit computes its output o as 

 

 
The BACKPROPAGATION Algorithm 

 



we are considering networks with multiple output units rather than single units as before, we 

begin by redefining E to sum the errors over all of the network output units. 

 

 
The learning problem faced by BACKPROPAGATION is to search a large hypothesis space 

defined by all possible weight values for all the units in the network. Gradient descent can be 

used to attempt to find a hypothesis to minimize E. One major difference in the case of 

multilayer networks is that the error surface can have multiple local minima, in contrast to 

the single-minimum parabolic error surface. 

REMARKS ON THE BACKPROPAGATION ALGORITHM 

 

Convergence and Local Minima: BACKPROPAGATION algorithm implements a gradient 

descent search through the space of possible network weights, iteratively reducing the error 

E between the training example target values and the network outputs. Because the error 

surface for multilayer networks may contain many different local minima, gradient descent 

can become trapped in any of these. As a result, BACKPROPAGATION over multilayer 

networks is only guaranteed to converge toward some local minimum in E and not 

necessarily to the global minimum error. 

Representational Power of Feedforward Networks: 

 

Boolean functions. Every boolean function can be represented exactly by some network with 

two layers of units, although the number of hidden units required grows exponentially in the 

worst case with the number of network inputs. To see how this can be done, consider the 

following general scheme for representing an arbitrary boolean function: For each possible 

input vector, create a distinct hidden unit and set its weights so that it activates if and only if 

this specific vector is input to the network. This produces a hidden layer that will always have 

exactly one unit active. Now implement the output unit as an OR gate that activates just for 

the desired input patterns. 

Continuous functions. Every bounded continuous function can be approximated with 

arbitrarily small error (under a finite norm) by a network with two layers of units. 



Arbitrary functions: Any function can be approximated to arbitrary accuracy by a network with 

three layers of units. Again, the output layer uses linear units, the two hidden layers use sigmoid 

units, and the number of units required at each layer is not known in general. 

Hypothesis Space Search and Inductive Bias It is interesting to compare the hypothesis space 

search of BACKPROPAGATION to the search performed by other learning algorithms. For 

BACKPROPAGATION, every possible assignment of network weights represents a syntactically 

distinct hy- pothesis that in principle can be considered by the learner. In other words, the 

hypothesis space is the n-dimensional Euclidean space of the n network weights. Notice this 

hypothesis space is continuous, in contrast to the hypothesis spaces of decision tree learning 

and other methods based on discrete representations. 

Hidden Layer Representations One intriguing property of BACKPROPAGATION is its ability to 

discover useful intermediate representations at the hidden unit layers inside the network. 

Because training examples constrain only the network inputs and outputs, the weight-tuning 

procedure is free to set weights that define whatever hidden unit representation is most 

effective at minimizing the squared error E. This can lead BACKPROPAGATION to define new 

hidden layer features that are not explicit in the input representation, but which capture 

properties of the input instances that are most relevant to learning the target function. 

Evaluating Hypothesis: Estimating the accuracy of a hypothesis is relatively straightforward 

when data is plentiful. However, when we must learn a hypothesis and estimate its future 

accuracy given only a limited set of data, two key difficulties arise 

Bias in the estimate. First, the observed accuracy of the learned hypothesis over the training 

examples is often a poor estimator of its accuracy over future examples. Because the learned 

hypothesis was derived from these examples, they will typically provide an optimistically biased 

estimate of hypothesis accuracy over future examples. 

Variance in the estimate. Second, even if the hypothesis accuracy is measured over an unbiased 

set of test examples independent of the training examples, the measured accuracy can still 

vary from the true accuracy, de- pending on the makeup of the particular set of test examples. 

The smaller the set of test examples, the greater the expected variance. 

Estimation Hypothesis Accuracy: When evaluating a learned hypothesis we are most often 

interested in estimating the accuracy with which it will classify future instances. At the same 



time, we would like to know the probable error in this accuracy estimate (i.e., what error 

bars to associate with this estimate). 

Sample Error and True Error: 

 

Definition: The sample error 

sample S is 

of hypothesis  h with  respect to target function f and data 

 

 
 

The true error of hypothesis h with respect to target function f and distribution D, is the 

probability that h will misclassify an instance drawn at random according to D. 

 

 
Confidence Intervals for Discrete-Valued Hypotheses: 

 

How good an estimate of errorD (h) is provided by errorS(h)?' for the case in which h is a 

discrete-valued hypothesis. More specifically, suppose we wish to estimate the true error 

for some discrete- valued hypothesis h, based on its observed sample error over a sample S, 

where 

• the sample S contains n examples drawn independent of one another, and independent 

of h, according to the probability distribution D 

• n>=30 

• hypothesis h commits r errors over these n examples (i.e., errorS(h) = r/n) 
 

Under these conditions, statistical theory allows us to make the following assertions: 

 

• Given no other information, the most probable value of errorD(h) is errorS(h) 

• With approximately 95% probability, the true error errorD(h) lies in the interval 



The general expression for approximate N% confidence intervals for errorD(h) is 

 

 
BASICS OF SAMPLING THEORY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A GENERAL APPROACH FOR DERIVING CONFIDENCE INTERVALS 

 

• Identify the underlying population parameter p to be estimated, for example, 

errorD(h). 

• Define the estimator Y (e.g., errorS(h)). It is desirable to choose a minimum- variance, 

unbiased estimator. 

• Determine the probability distribution DY that governs the estimator Y, including its 

mean and variance. 



• Determine the N% confidence interval by finding thresholds L and U such that N% of 

the mass in the probability distribution DY falls between L and U 

 

DIFFERENCE IN ERROR OF TWO HYPOTHESES 

 

Estimate the difference d between the true errors of these two hypotheses. 

 

 
The obvious choice for an estimator in this case is the difference between the sample errors, 

which we denote by d^ 

 

 
It can also be shown that the variance of this distribution is the sum of the variances of errors, 

errorS1(hl) and errors2(h2) 

 

 
approximate N% confidence i



 

Unit-III 

A: Bayesian learning 

Bayesian learning provides a quantitative approach which updates probability for a 

hypothesis upon more information being available. 

Bayesian learning uses: 

• Prior hypothesis. 

• New evidences or information. 

Features of Bayesian learning methods include: 

• Each observed training example can incrementally decrease or increase the estimated 

probability that a hypothesis is correct. 

• Prior knowledge can be combined with observed data to determine the final 

probability of a hypothesis. 

• Bayesian methods can accommodate hypotheses that make probabilistic predictions. 

• New instances can be classified by the combining the predictions of multiple 

hypotheses, weighed by their probabilities. 

• In cases, where Bayesian learning seems to be difficult, they can provide a standard of 

optimal decision making against which other practical methods can be measured. 

The Bayesian learning is used to calculate the validity of a hypothesis for the given data. The 

key to this estimation is the Bayes theorem. 

How do we specify that the given hypothesis best suits our data? 

One way to define the best hypothesis is to check if the hypothesis has the maximum 

probability for the given data D. 

Bayes theorem comes up with a way to find the best hypothesis using the prior probabilities 

given and the observed data. The outcome of the Bayes theorem will be the posterior 

hypothesis. 

Bayes Theorem: 

 

P(h)= This is prior probability that the hypothesis holds, without observing the training 

examples. 

P(D)=This is the probability of given data D, without the knowledge on which hypothesis 

holds. 

P (D| h) = This denotes the probability of data D for the given hypothesis h. 

P (h| D) = This denotes the posterior hypothesis. It is an estimate that the hypothesis h holds 

for the given observed data. (It is the probability of individual hypothesis, given the data) 

P (h| D) increases with respect to increase in P(h) and P (D| h). 



 

Maximum A Posteriori (MAP) hypothesis: 

The goal of Bayesian learning is finding the maximally probable hypothesis. This is called 

Maximum a posteriori (MAP) hypothesis. 
 

 

 

 

 

(2) 

 
 
 

(3) 

 

While, deducing to step (3), we can ignore P(D) as it is a constant and is independent of h. H 

is the hypothesis space that includes all the candidate hypotheses. 

In some cases, we assume that every hypothesis ‘h’ of the hypothesis space ‘H’, has equal 

probability (P(hi) = P(hj) for all hi and hj in H). Then, step (3) can be further solved as, 
 

So, any hypothesis that maximizes P (D| h) is called the maximum likelihood hypothesis, 

hML. 

Let us apply Bayes theorem to an example: 

We have prior knowledge that only 0.008 have cancer over the entire population. The lab test 

returns a correct positive result in only 98% of the cases. The lab test returns a negative result 

in 97% of the cases. Suppose we now consider a new patient for whom lab test returns a 

positive result, should we diagnose the patient or not? 

So, the given data is P(cancer) = 0.008 

P(~cancer) =1-0.008=0.992 

P (+| cancer) = 0.98 

P(-|cancer) =1-0.98=0.02 

P(-|~cancer) = 0.97 

P(+|~cancer) =1=0.97=0.03 

hMAP = argmax P(D|h) P(h) 

hMAP = argmax P(+|cancer) P(cancer) 

hMAP = argmax P(+|~cancer) P(~cancer) 

P(+|cancer) P(cancer) = 0.98 * 0.008= 0.0078 

(1) 



P(+|~cancer) P(~cancer) = 0.03 * 0.992 =0.0298 

So, hMAP = 0.0298. So, the patient needn’t be diagnosed. 

Bayes Theorem and Concept learning 

In concept learning, we search for hypothesis that best fits the training data from a large 

space of hypotheses. 

Bayes theorem, also follows a similar approach. It calculates the posterior hypothesis of each 

hypothesis given the training data. This posterior hypothesis is used to find out the best 

probable hypothesis. 

Brute force Bayes concept learning 

Brute force MAP learning algorithm 

This algorithm provides a standard to judge the performance of other concept learning 

algorithms. 

1. For each hypothesis h in H, calculate the posterior hypothesis. 
 

2. Output the hypothesis hMAP with the highest posterior probability 
 

For specifying values of P(h) and P(D|h), we make few assumptions: 

1. The training data D is not erroneous data. 

2. The target concept c is contained in the hypothesis. 

3. Any hypothesis is assumed to be most probable than any other. 

So, with the above assumptions: 

              (1) 

 
            (2) 

P(D|h) is the probability of data for given world of hypothesis holds h.Sice, we are 

assuming that it is a noise free data, the probability is either 1 or 0, implying 1 if the given 

hypothesis is consistent with h, else 0 (i.e., inconsistent). 

So, if we substitute the values of P(h) and P(D|h) into the Bayes theorem, 

 
  (3) 



Considering h to be an inconsistent hypothesis, substitute corresponding values of (1) and 

(2) into (3) 
 

Considering h to be a consistent hypothesis, substitute corresponding values of (1) and (2) 

into (3) 
 

VSH,D is the subset of hypotheses from H that are consistent with D. The sum over all 

hypotheses of P(h|D) is 1. The value of P(D) can be derived as, 
 

So, we can conclude that, 
 

Schematically, this process can be depicted as, 
 

 
From the figure, we can understand that: 

1. Initially fig (a), all the hypotheses have same probability. 

2. As the data is being observed fig (b), the posterior probability of the inconsistent 

hypothesis becomes zero. 

3. Eventually, we are approaching a state where we have hypotheses that are consistent 

with the data given. 

MAP hypothesis and consistent learners 



The learning algorithm is a consistent learner if it outputs hypothesis that commits zero 

errors. So, a consistent learner outputs a MAP hypothesis for uniform prior probability 

distribution over H and for noise- free data. 

Considering, how can we use Bayesian learning in Find-S and Candidate elimination 

algorithm which do not use any numerical approaches (like probability)? 

Find-S algorithm outputs the maximally specific consistent hypothesis. So as Find-S 

algorithm outputs a consistent hypothesis, it can be implied that it outputs MAP 

hypothesis under the probability distributions P(h) and P(D|h). Though Find-S doesn’t 

manipulate any probabilities explicitly, these probabilities at which MAP hypothesis can 

be achieved are used for characterizing the behaviour of Find-S. 

Though Bayesian learning takes a lot of computation, it can be used to characterize the 

behaviour of other algorithms. As in inductive bias of learning algorithm where set of 

assumptions made; Bayesian interpretation presents a probabilistic approach using Bayes 

theorem to find the assumptions to deduce a MAP hypothesis. 

For, Find-S and Candidate elimination algorithms, the set of assumptions can be “the 

prior probabilities over H are given by the distribution P(h), and the strength of data in 

accepting or rejecting a hypothesis is given by P(D|h).” 

Maximum Likelihood and Least- squared error hypothesis 

In learning a continuous-valued target function, Bayesian learning states that under 

certain assumptions any learning algorithm that minimizes the squared error between 

the output hypothesis predictions and the training data will output a maximum 

likelihood. 

Consider an example of learning a real-valued function, which has f as its target function. 

The training examples <xi, di> where di=f(xi)+ei. Here f(xi) is the noise-free value of the 

target function an ei is representing error. The error ei corresponded to the variance. 
 

 

So, we can find the least-squared error hypothesis using the maximum likelihood 

hypothesis. 

         (1) 

Assuming that the training examples are mutually independent given h, P(D|h) can be 

written as product of p (di, h), where p is the probability density function. The mean is 

equal to target function or the hypothesis. 



 

  (2) 

 
 
 
 
 

 
  (3) 

 
 

Applying logarithm, we get,  

 

 
  (4) 

 

 

The first term is not dependent on the hypothesis h, so can be discarded. 
 

             (5) 

We can discard the remaining constants. In the equation (5), we are maximizing the 

negative quantity, which implies minimizing the positive quantity. 

 
  (6) 

 
 

The equation (6) shows the minimum likelihood hypothesis that minimizes the sum of the 

squared errors between the observed training data di and the hypothesis predictions h(xi). 

Maximum likelihood hypothesis for predicting probabilities 

Suppose that we wish to learn a target function f’: X {0,1}, such that f’(x)= P(f(x)=1). 

In order to find the minimum likelihood hypothesis, we must find P(D|h) where D is the 

training data such as D= {<x1,d1>…. <xm,dm>}, di is the observed 0 or 1 value for f(xi). 

Assuming that xi and di are random variables, and assuming that each training example is 

independently drawn, we can say that, 

 
  (1) 

 

 
We further assume that, x is independent of h, so (1) can be written as: 

 

       (2) 

In general, equation (2) can be depicted as: 



 

  (3) 

 
 

 

The equation (3) can be re-expressed as: 
 

 
The equation (4) can be substituted in equation (1), we get: 

 
        (5) 

So, the maximum likelihood can be derived as: 
 

      (6) 

By substituting, (5) in (6), we get, 

 
  (7) 

 
 

P(xi) can be discarded as it is constant, 

         (8) 

So, by applying logarithm to (8), the maximum likelihood will be, 
 

Gradient search to maximize likelihood in neural net 

Gradient ascent can be used to define maximum likelihood hypothesis. The partial derivative 

of G (h, D) with respect to weight wjk from input k to unit j is: 
 

 
 

  (4) 

  (1) 



If the neural network is constructed from a single layer of sigmoid units, we have, 

 

         (2) 

Where, 

xijk is the kth input to unit j for the ith training example. 

 is the derivative of sigmoid squashing function. 

Substituting (2) in (1), 

          (3) 

We are using gradient ascent to maximize P(D|h), we use weight-update rule: 
 
 

where, 
 

 

where is the small positive constant that determines the step size of the gradient ascent 

search. 

This weight update rule can be used to maximize the hML. 

Minimum Description length principle 

Minimum description length principle uses basics of information theory to modify the 

definition of hMAP. 

Consider hMAP, 

 
 

  (1) 

 
 

Minimizing (1) in terms to log2, 

 
 

 

 
Minimizing (2) to its negative, 

  (2) 

 
 

  (3) 



Equation (3) can be interpreted as a statement that short hypotheses are preferred. As in 

information theory, we minimize the expected code length by assigning shorter codes to 

messages that are more probable. We will use code C, that encodes the message i, this is 

denoted with Lc(i). 

So, equation (3), can be interpreted as, 

-log2 P(h): It is the size of the description of hypothesis space H. So, = -log2 P(h).CH is 

the optimal code for hypothesis space H. 

-log2 P(D|h): It is the description length of training data D given the hypothesis h. 

= -log2 P(D|h). CD|h is the optimal code for describing data D assuming that both 

sender and receiver know the hypothesis. 

So, equation (3), can be written as, 

 

 

The minimum description length (MDL) principle suggests to choose hypothesis that 

minimizes the sum of two description lengths. 

So, 
 

 
If we consider, C1 as the optimal coding for CH and C2 as the optimal coding for CD|h, then 

hMAP= hMDL. 

Naïve Bayes Classifier 

Naïve Bayes classifier is used for learning tasks that describe the instances with conjunction 

of attribute values. A set of training examples is described by the tuple of attribute values < 

a1, a2, …., an>. We can use the Bayesian approach to classify the new instance and to assign 

it to the most probable target value, 

 
(1) 

 

By Bayes theorem, the expression (1) can be rewritten as: 

       (2) 

The naïve Bayes classifier assumes that the attribute values are conditionally independent 

given the target value. That is, the probability of observing the conjunction a1, a2, …, an is 

product of probabilities of the individual attributes. 



Naïve Bayes assumption: 
 
 

 

By substituting (3) in (2), 

(3) 

 
 
 

(4) 

 

: This is the output of the naïve Bayes classifier. 

B: Instance-based learning 

Instance-based learning methods store the training examples and classify them only when a 

new instance has to be classified. When a new query is given to these methods, a set of 

similar instances are retrieved from memory and are used to classify the new instance. 

Instance-based learning methods can construct a different approximation for each distinct 

query instance that must be classified, that is, rather than estimating the target function as a 

whole for the entire instance space, instance-based learning methods estimate target function 

for every new instance that has to be classified. 

Instance-based learning methods are called “Lazy learners”, as they do not process the 

training data set until a new instance has to be classified. 

Through instance-based learning though we have complex target function, it still can be 

described by a collection of less complex local approximations. 

The instance-based learning approaches cost high in classifying data, this is because the 

classification is only done when a new instance is observed. These also try to consider all the 

attributes while retrieving the similar training examples from the memory. This way finding 

the set of similar training examples from a large collection of data, might be tedious. 

K-nearest neighbor learning algorithm (KNN) 

KNN algorithm assumes that all instances correspond to points in the n-dimensional space. It 

is defined using Euclidean distance. If x is the arbitrary instance, the vector 

 

where ar(x) denotes the value of the rth attribute of instance x. 
The distance between two instances xi and xj is defined to be d(xi,xj), where, 

 

 

KNN algorithm can be used for estimating discrete values and continuous values. 



 
 

 - It is the class label for xq. 

 - It is the class label of xi. 

The above algorithm can be used to find the discrete-values target function. For continuous 

value, the value returned by the algorithm is: 
 

 

So, in KNN, when a new instance xq is given to classify, the algorithm finds outs the ‘k’ 

nearest neighbor’s for xq, and then classifies instance xq based on the class labels of these ‘k’ 

nearest neighbours. 

Distance weighted nearest neighbour algorithm 

The KNN can be further improved by adding a weight to the existing instances. The highest 

weight is assigned to the instances that are near to xq. So, the value returned by the algorithm 

would be: 
 

 

where, 
 

If xq exactly matches with xi, the   is assigned with . 

 
 
Remarks on k- nearest neighbor algorithm 

• KNN is robust to noisy training data. 

• KNN effectively works on the large set of training models. 

Locally weighted regression 

In KNN, we have observed that the target function f(x) is at single query point x=xq. Locally 

weighted regression finds the approximation for f over a local region surrounding xq. As its 

name suggests, locally weighted regression is used to approximate real-valued functions 

using weight, based on the distances from the query point over a locally surrounded region of 

xq. 



 

Generally, regression is of the form, 
 

W0 – Bias. 

ai(x) – Denotes the value of ith attribute of instance x. 

The error function that was used for global approximation was: 
 
 

And we used a training rule to adjust the weights: 

 , where, 

- it is the change in weight. 

- Learning rate. 

x: instance. 

D: complete dataset. 

To find the local approximation, we can redefine the error criterion E, using the three 

possible approaches: 

1. Minimize the squared errors over the k nearest neighbors: 

2. Minimize the square error over entire dataset D, while weighting the error of each 

training example by some decreasing function K od its distance from xq: 

 

3.  

Considering the 3 criteria might be a good option as the computation cost is independent of 

the total number of training examples. 

Radial Basis Functions (RBF) 

Radial basis network is used for global approximation of the target function which is 

represented be a linear combination of many local kernel functions. 

In RBF, the learned hypothesis is the function of the form: 
 



where, 

xu: Instance. 

Ku (d (xu, x)): Kernel function which decreases as distance d (xu, x) increases. 

 onstant that specifies the no. of kernel functions to be 

included.    - It is the global approximation to f(x). 

The kernel function is given by: 
 

 
RBF networks are trained in two stage process: 

1. The k value is defined to determine the no. of hidden layers, and each hidden layer u 

is defined using and  . 

2. The weights wu are defined to maximize the fit of the network to the training data. 
 
 

 

Case-Based reasoning (CBR) 

CBR is an instance- based learning approach that represents its instances as symbolic 

representations. There are three components required for CBR: 

1. Similarity function like Euclidean function. 

2.Approximation and adjustment of instance. 

3.Symbolic representation 

Let’s design a CADET (Case-based design model) for designing a water faucet. To design a 

new model for a water faucet, CADET uses its previously stored models to approximate the 

symbolic representation for a new water faucet. 



 

 

So, to design a model for the scenario given in the above diagram, the CADET has found a 

similarity with the T-junction pipe (which is from its library). In T- junction pipe, T, Q are 

quantitative parameters that represent temperature and waterflow respectively. So, if T1, Q1 is 

positive, it means that there is water flow to T3, Q3 from that end. The temperature can be 

considered either to be cold or warm, and it depends on the application build. So, let’s 

assume T1 is cold and T2 is warm. So Q1 is +, it means Q3 gets cold water. Similarly, if Q2 is 

+, Q3 has water flow from that end with warm water. 

Remarks on lazy learner and eager learner 

Lazy method takes less computation during the training and more compute time during the 

prediction of target value for a new query. Lazy learners upon seeing the new instance xq 

decide to generalize the training data, whereas, eager learners by the time they have a new 

instance, they already have an approximated target function. 

The lazy methods use effectively richer hypothesis space as it follows local approximation to 

the target function for each instance. Though eager methods tend to form local 

approximations too, they don’t have ability as lazy learners do. 

GENETIC ALGORITHMS 

Genetic algorithms provide learning methods that can be compared to biological evolution. 

The hypotheses are described by set of strings or symbolic expressions or even computer 

programs. Genetic Algorithms perform repeated mutation to get the best hypothesis. The best 

hypothesis is the one that optimizes the fitness score. The algorithm iteratively works on a set 

of hypotheses called as population, and in each iteration the members are evaluated based on 

a fitness function. The members that are mostly fit are made as new population. Some of 

these separated members are passed to the next generation and few others are used for 

creating off-springs using crossover and mutation. This process is repeated until best 

hypotheses is formed. 



 
 

The inputs to this algorithm are: 

1. Fitness function to rank the hypotheses. 

2. Threshold, which specifies about level of fitness for termination. 

3. Size of population. 

4. Parameters on how the off-springs must be generated. 

At every iteration, hypotheses are generated for the current population. A probabilistic 

approach is used to choose hypotheses that are to be passed to next generation: 

     (1) 

 
These selected hypotheses are passed to next generation along with few other members that 

are formed through crossover. In crossover, two hypotheses are chosen (consider them to be 

parent) from current population based on (1); some properties of each them are separated and 

combined to form new hypotheses. 

Genetic Algorithm operators 

The most common operators in Genetic algorithm are mutation and crossover. Mutations are 

usually performed after crossover. 

The crossover operator produces two off-springs from two parents. It copies selected bits 

from each parent and generates the new offspring by combining these selected bits. How do 

we choose these selected bits? For this we use an additional string called crossover mask. 

1. Single crossover: The crossover mask always begins with contiguous n number of 

1’s, followed by necessary 0’s. 

The first offspring is combined with bits selected from first parent and then bits 

selected from second parent. The second offspring contains the bits that are not used 

in the first offspring. 



 

2. Two-point crossover: The crossover mask begins with n0 0s and n1 1s, followed by 

necessary number of zeroes. The offspring in two-point crossover is created by 

substituting intermediate segments of one parent into the middle of the second parent. 
 

3. Uniform crossover: The crossover mask is generated in random. The off-springs are 

produced from combining the uniform bits from each parent. 

 

Mutations are performed by changing the bits from a single parent. 
 

Fitness function and Selection 

Fitness function is used to rank the hypotheses so that they can be transferred to the next 

generation. 

Different fitness measures can be used to select the hypotheses: 

1. Fitness proportionate selection or Roulette wheel selection: It proposes that the 

probability of the hypotheses will be selected is given by ratio of its fitness to the 

fitness of other members in the current population. 

2. Tournament selection: Two hypotheses are chosen randomly, and using some 

probability measure p, the more fit hypotheses is estimated. 

3. Rank Selection: The hypotheses in the current population are sorted based on their 

fitness score. Based on the fitness rank of these sorted hypotheses, the hypotheses are 

selected that are to be transferred to the next generation. 

Hypothesis Space Search 

Genetic Algorithms use randomized beam search method to get the maximally fit hypothesis. 

Genetic algorithm experiences crowding. Crowding is a phenomena where the highly fit 

individuals in the population quickly reproduces and eventually, the population is dominated 

with these individuals and individuals that are similar to these. Because of crowding, there 

with be less diversity in the population, which effects the process of genetic algorithm. 

How can we reduce crowding? 

1. Selecting a different fitness function other than Roulette wheel selection. 



2. Restricting the kinds of individuals to generate off-springs. 

Population Evolution and the schema theorem 

The schema theorem provides a mathematical approach to characterize evolution of the 

population within the genetic algorithm. It is based on the patterns that are used to describe 

the set of bit strings. 

A schema in any string is composed of 0s, 1s, *’s. *’s can be interpreted as “don’t care” 

conditions. The schema theorem characterizes in terms of number of instances representing 

each schema. Suppose m (s, t) is the number of instances of schema s in the population at the 

time t. Schema theorem describes an expected value m (s, t+1) in terms of m (s, t). 

To calculate m (s, t+1) which is also considered as E (m (s, t+1) ), we use the probabilistic 

distribution: 

 

f(h)- fitness of individual bit string h. 

- Average fitness of all the individuals in the population. 

The probability that we will select a hypothesis from the representative schema s is: 
 

 
n- number of individuals in the population. 

- indicates that h belongs to schema and also the population. 

- average fitness of instances of schema s at time t. 
 

 

As we have n independent selection steps, we can create a new generation that is n times the 

probability. 
 

The schema theorem considers only the single- point crossover and the negative influence of 

genetic operators. So, the schema theorem thus provides a lower bound to the expected 

frequency of schema s: 



 

, 

Where, 

pc- probability of single-point crossover. 

pm- probability that a bit will be mutated. 

o(s)- the number of defined bits in the schema. 

d(s)- distance between left most and rightmost defined bits in s. 

l- length of individual bit strings in population. 

Genetic programming 

Here, the individuals that are evolving are computer programs. 

The programs are represented in form of trees corresponding to their parse trees. Every 

function call is represented by the node in the tree, and its arguments are the descendant 

nodes of the tree. Let us suppose a function sin(x) + √𝑥2 + 𝑦. The tree representation of this 

equation would be as: 

 

 
In every iteration, a new generation of individuals is produced. The crossover operations are 

performed by replacing a randomly chosen subtree of one parent program by a subtree from 

another parent program. 



 

 
 

Remarks on Genetic programming 

1. These evaluate computer programs. 

2. They provide intriguing results despite the huge size of hypothesis space it has to 

search. 

3. The performance depends on the choice of representation and on choice of fitness 

function. 

Models of evolution and learning 

Lamarckian Evolution 

He proposed that the experiences inculcated by an individual during the lifetime, will be 

directly affecting the genetic makeup of their offspring. Despite the current view that states 

the experiences learned during the lifetime will not affect the genetic make up of off-spring, 

Lamarckian proposal is believed to improve the effectiveness of computerized genetic 

algorithms. 

Baldwin effect 

It is based on the following observations: 

1. If a species is evolving in a changing environment, there will be evolutionary pressure 

that favour individuals that have capability to learn in their lifetime. 

2. The individuals who are able to learn many traits depend less on their genetic code. 

They support diverse gene pool, which results in rapid evolutionary adaptation. 

Baldwin effect suggested that by increasing survivability, the individual learning supports 

more rapid evolutionary progress, which increases the chance for species to evolve 

genetically. 



Unit -IV 

Learning Sets of Rules 

There are different ways to learn rules, rules can be considered as the hypothesis. We can use 

decision trees, or genetic algorithms in order to derive hypothesis. But there are few algorithms 

that directly learn rules unlike decision tree which first constructs tree and then generates rules. 

These algorithms that directly learn rule sets uses sequential covering algorithms which learns a 

single rule at a time with every iteration. The sequential covering algorithms finally result a set 

of rules (hypotheses). 

The rules are expressed using Horn clauses (IF-THEN representation) 
 

The predicate Parent (x, y) implies that y is parent of x and the predicate Ancestor (x, y) implies 

that y is ancestor of x. If we observe the second rule, it can be understood as, if z is the parent of 

x and y is ancestor of z, then y will be the ancestor of x. 

Sequential Covering algorithm 

Sequential covering algorithm uses LEARN_ONE_RULE subroutine and sequentially learns rules 

which cover full set of positive examples. In every iteration a new rule is formed and is added to 

the Learned_rules set, and the training examples that are correctly classified with the new rule are 

removed. This is an iterative process and it happens until a desired fraction of positive training 

examples are classified. 
 



So, how do we implement LEARN_ONE_RULE? 

We can implement a LEARN_ONE_RULE, by using similar approach as ID3. Initially, a general 

rule is formed, which is eventually made more specific by adding new attributes. This follows a 

greedy approach. LEARN_ONE_RULE though doesn’t cover the entire dataset; it provides rules 

that have high accuracy. 

 

Each hypothesis in the LEARN_ONE_RULE is the conjunction of attribute value. The result of 

the LEARN_ONE_RULE a rule whose performance is high. As this LEARN_ONE_RULE is 

called multiple times by the sequential covering algorithm; collection of rules is formed that 

cover the training examples. 



 
 

 Variations 

There are some other approaches that can be used to find set of if-then rules: 

1. Negative-as-failure: This classifies any instance as negative if it doesn’t prove to be 

positive. 

2. AQ Algorithm: This learns a disjunctive set of rules that together cover the target 

function. 

There are other evaluation functions as LEARN_ONE_RULE, which can be used to evaluate the 

performance: 

1. Relative frequency: n denotes the no. of examples that rule matches and ncdenotes the no. 

of examples that are correctly classified. 
 

2. M-estimate of accuracy: This approach is preferred when data is scarce. 



 

 

n- no. of examples. 

nc- no. of examples correctly classified. 

p- prior probability from entire dataset. 

m- weight or equivalent no. of examples for weighing p. 

3. Entropy: It measures the uniformity of the target function values. 

Learning first-order rules 

Terminology 

There are some terminologies: 

1. All expressions are composed of constants (Capital symbols), variables (lowercase 

values), predicate symbols (true or false) and functions. 

2. Term: It is a constant, any variable or any function applied on term. 

3. Literal: A literal is any predicate or its negation applied to any term. 

4. Clause: A clause is disjunction of literals. 

5. Horn Clause: It is a clause containing at most one positive example. 

H is a positive literal. The above expression can be represented as, 

This is equivalent to: 

 

First-Order Horn Clauses: 

First order horn clauses provide generalized rules whereas prepositional representations 

are more specific. Assume an example where the target value of Daughter(x,y) is to be found. 

Daughter(x,y) is true if x is daughter of y, else it is false. So the positive example of this 

scenario is given as: 
 



So, the prepositional representation would be as, 
 

This rule is more specific, so first-order representations are used to provide more generalized 

rules: 
 

x, y are variables that can bound to any person. 

First-order horn clauses also refer to variables that do not exist in postconditions, but occur in 

preconditions. 
 

In the above rule, z is in pre-condition but not in postcondition. Whenever a variable occurs in 

only preconditions, such rules are satisfied as long as there’s binding of variable that satisfies the 

corresponding literal. 

Learning sets of first-order rules: FOIL 

FOIL algorithm seems to be same as Sequential covering algorithm as it uses the 

LEARN_ONE_RULE routine and also it learns sets of first-order rules, one at a time. FOIL 

restricts the literals that contain function symbols. FOIL is more expressive than Horn clauses. 

FOIL algorithm learns one rule at time, and removes the positive examples covered by the rules 

in every iteration. The inner loop accommodates first-order rules. FOIL seeks only rules that 

predict when the target literal is True. The outer loop adds a new rule to disjunctive hypothesis, 

Learned_rules. With every new rule we generalize the current disjunctive hypothesis. The inner 

loop of FOIL performs general_to_specific search on the second hypothesis space to find 

preconditions that form pre-conditions of new rule. 



 

 

How FOIL is different? 

1. In inner loop, FOIL employs a detailed approach to generate candidate specializations of 

the rule. 

2. FOIL uses Foil_Gain as it’s performance unlike entropy that is used in 

LEARN_ONE_RULE. FOIL covers only positive examples. 

FOIL will form recursive rules when target predicate is included in the list of predicates. In case 

of noise-free data, FOIL continues to ass new literals to the rule until no negative example is 

covered. To handle noisy data, the search is continued until some limit of accuracy, coverage and 

complexity. 

Induction as inverted Deduction 



 

Induction means to derive a principle from set of observations, whereas deduction means to 

generate different observations from the principle or theory. Inductive logic programming is also 

based on observation that induction is just the inverse of deduction. The learning means to discover 

hypothesis that satisfies both given training data D, back ground knowledge B. Here, xidenotes the 

instance and f(xi) is the target value. So, the hypothesis has to classify 

f(xi)deductively from hypothesis h, background knowledge B, and the description xi. 
 

(1) 
 

So, f(xi) follows deductively from (B ^ h ^ xi) or it can also be said as “(B ^ h ^ xi) entails f(xi) “. 

(1) describes the constraint that must satisfy every training instance xiand the target value 

f(xi) must follow deductively from B, h, and xi. 

To understand the role of back ground knowledge, let us consider a positive example Child 

(Bob, Sharon), where the instance is described by literals Male (Bob), Female (Sharon), and 

Father (Sharon, Bob). The background knowledge is provided as, 

Parent (u, v)        Father (u, v). So, this situation can be described using (1) as: 
 

So, the probable hypotheses that satisfy the constraint (B ^ h ^ xi) ├ f(xi), could be: 
 



h1could have been generated even if there is no background knowledge. But, h2 can only be 

generated with some background knowledge. 

In this example, we have added a new predicate Parent which was not present in the original 

description of xi. This process of augmenting predicates based on the back ground knowledge 

is called constructive induction. 

An inverse entailment operator produces the hypothesis that satisfies equation (1) by taking 

training data and background knowledge as input. It is represented as O (B, D). 
 

To choose hypotheses that follow the constraint, the inductive logical programming uses 

Minimum description length principle. 

Few observations while formulating the inverse entailment operator: 

1. This formulation subsumes the common definition of finding the learning task as finding 

some general concept that matches a given set of training examples. 

2. By using background knowledge B, we can provide a rich definition of when the 

hypothesis might fit the data and also provide learning methods which search for 

hypotheses using B, rather than just searching the space of syntactically legal hypotheses. 

There are also some difficulties faced by the inductive logical programming upon following 

this formulation: 

1. They need noise-free data. 

2. The search through the space of hypotheses is difficult in general case, as there are many 

hypotheses that satisfy (B ^ h ^ xi) ├ f(xi). 

3. The complexity of hypothesis space increases with increase in background knowledge. 

 

 
Inverting Resolution 

The resolution rule is a sound and complete rule for deductive inference in first-order 

logic. 

How can we invert the resolution rule to form an inverse entailment operator? 

Let L be an arbitrary propositional literal, and P and R be arbitrary prepositional clauses. The 

resolution rule is: 

 

The rule has two assertions, P ˅ L and ¬L ˅ R, it is obvious that L and ¬L are false. So, either P 

or R must be true. 



 
 

Assume that there are two clauses C1 and C2, the resolution operators identify the literal, suppose 

M, that exists as positive literal in C1 and negative literal in C2. The propositional resolution 

operator then comes to a conclusion based on the resolution rule. For example, 

M= ¬KnowMaterial, which is in C1 and C2 has ¬(¬KnowMaterial). The conclusion from the 

clause is union of literals C1-{L}=PassExam and C2-{¬L} = ¬Study. This conclusion is based on 

the resolution rule. 
 

 
 

The inductive entailment operator must derive one initial operator, suppose C2, with given a 

resolvent C and the other initial operator C1. 

For example, consider C= A ˅ B and the initial clause C1= B ˅ D. We must derive C2. If we 

observe the definition of resolution rule, any literal that occurs in C but not in C1 must be 

present in C2 and the literal that is in C1 but not in C, must have been removed from the 

resolution rule, and its negation is in C2. So, C2= A ˅  ¬D. There may be some other possibilities 

of C2 such that C2 and C1 produce a resolvent C. 
 

 
First-Order Resolution 



The resolution rule can be extended to first-order expressions using unifying substitutions. 

Substitution is mapping of variables to terms. Suppose, θ = {x/Bob, y/z}, this indicates x can 

be replaced with Bob and y can be replaced with z. Wθ indicates the result of applying to 

substitution θ to expression W. Suppose, L=Father(x, Bill), the substitution Lθ= Father ( Bob 

,Bill). 

Unifying substitution: θ is a unifying substitution when L1 θ=L2 θ. The significance of unifying 

substitution is the resolvent of the clauses C1 and C2 is found by identifying a literal M, that 

appears in C1 such that it is ¬M in C2. The resolution rule to find resolvent C: 
 

 

 

Inverting Resolution: First-order Case 

In this θ is factored as θ1 and θ2 . θ1 has substitutions that relate to C1 and θ2 has substitutions 

of C2. So, 

     (1) 

This is factorized as 

(2) Can be expressed as: 

(3)  
 

C2 can be found by substituting L2 = ¬L1 θ1 θ2
-1. So the inverse resolution rule for the first-order 

logic is: 
 

(4)  

 

Progol 

Progol system employs an apprach where,the inverse entailment can also be used to generate a 

most specific hypothesis, that satisfies both background knowledge and observed data. This most 

specific hypothesis along with an additional constraint( that is, the hypotheses considered are 

(2) 



more general than this specific hypothesis) is used to bound a general-to-specific search through 

hypothesis space. 

The algorithm of such system would be as: 

1. The user specifies a restricted language of first-order expressions to be used as hypothesis 

space H. 

2. Progol uses sequential covering slgorithm to learn a set of expressions from H that cover 

the data. 

3. Progol then performs a general-to-specific search of hypothesis space bounded by the most 

general possible hypothesis and by the specific bound hi. Within this set of hypotheses, it 

seeks the hypothesis having minimum description length. 

Analytical Learning 

Introduction 

• Inductive learning methods, i.e. methods that generalize from observed training 

examples. 

• The key practical limit on these inductive learners is that they perform poorly when 

insufficient data is available. 

• One way is to develop learning algorithms that accept explicit prior knowledge as an input, 

in addition to the input training data. 

• Explanation-based learning is one such approach. 

• It uses prior knowledge to analyze, or explain, each training example in order to infer 

which example features are relevant to the target function and which are irrelevant. 

• These explanation helps in generalizing more accurately than inductive learning 

• Explanation- based learning uses prior knowledge to reduce the complexity of the 

hypothesis space to be searched, thereby reducing space complexity and improving 

generalization accuracy of the learner. 

 

 
Example 1: 

Let us consider the task of learning to play chess. Here we are making our program to recognize 

the game position i.e. target concept as "chessboard positions in which black will lose its queen 

within two moves." Figure 1 shows the positive samples of training concept. 

Now if we take inductive learning method to perform this task, it would be difficult because the 

chess board is fairly complex (32 pieces can be on any 64 square) and particular patterns i.e. to 

place the pieces in the relative positions (placing them exactly following game rules).So for all 

these we need to provide thousand of training examples similar to figure 1 to expect an inductively 

learned hypothesis to generalize correctly to new situations. 



 
 

Even after considering only the single example shown in Figure 1 , most would be willing to 

suggest a general hypothesis for the target concept, such as "board positions in which the black 

king and queen are simultaneously attacked," and would not even consider the (equally 

consistent) hypothesis "board positions in which four white pawns are still 

locations."So we can’t generalize successfully with that one example. 

in their original 

 

Now why to consider training example as positive target concept?"Because white's knight is 

attacking both the king and queen, black must move out of check, thereby al- lowing the knight 

to capture the queen." They provide the information needed to rationally generalize from the details 

of the training example to a correct general hypothesis. 

What knowledge is needed to learn chess? It is simply knowledge of which moves are legal for 

the knight and other pieces, the fact that players must alternate moves in the game, and the fact 

that to win the game one player must capture his opponent's king. 

However, in practice this calculation can be frustratingly complex and despite the fact that we 

humans ourselves possess this complete, perfect knowledge of chess, we remain unable to play the 

game optimally. 

Inductive and Analytical Learning Problems 

➢ In inductive learning, the learner is given a hypothesis space H from which it must select 

an output hypothesis, and a set of training examples D = {(xl, f (x~)), . . . (x,, f (x,))} where 

f (xi) is the target value for the instance xi. The desired output of the learner is a hypothesis 

h from H that is consistent with these training examples. 
 

➢ In analytical learning, the input to the learner includes the same hypothesis space H and 

training examples D as for inductive learning. In addition, the learner is provided an 

additional input: A domain theory B consisting of background knowledge that can be 

used to explain observed training examples. The desired output of,the learner is a 

hypothesis h from H that is consistent with both the training examples D and the domain 

theory B. 



To illustrate, in our chess example each instance xi would describe a particular chess position, 

and f (xi) would be True when xi is a position for which black will lose its queen within two 

moves, and False otherwise. Now we define hypothesis space H to consist of sets of Horn 

clauses (if-then rules) where predicates used rules refer to the positions or relative positions of 

specific pieces on the board. The domain theory B would consist of a formalization of the rules 

of chess. 

Note in analytical learning, the learner must output a hypothesis that is consistent with both the 

training data and the domain theory. 

Example2: 
 

 

Table 1. SafeToStack 

The example 2 is about Analytical Learning problem SafeToStack (x, y). 

 
 

Here we chosen 

hypothesis space H which is set of hypothesisfrom first order if- then rules (i e. Horn Clause). The 

example Horn clause hypothesis shown in the table asserts that it is SafeToStack any object x on 

any object y, if the Volume of x is Lessthan the Volume of y. The Horn clause hypothesis can refer 

to any of the predicates used to describe the instances, as well as several additional predicates and 

functions. One such example is SafeToStack(obj1, obj2) shown in table. 

Here domain theory considered will explain certain pairs of objects can be safely stacked on one 

another (same as chess example it takes all the rules of the game). The domain theory shown in 



the table includes assertions such as "it is safe to stack x on y if y is not Fragile. Here the domain 

theory also uses subsequent theories i.e. pedicators such as Lighter has more primitive attributes 

like weight,vol,etc which helps 

classify. 

to generalize more accurately and the given is sufficient to 

 

LEARNING WITH PERFECT DOMAIN THEORIES: PROLOG-EBG 

• we consider explanation-based learning from domain theories that are perfect, that is, 
domain theories that are correct and complete. 

• A domain theory is said to be correct if each of its assertions is a truthful statement about 

the world. 

• A domain theory is said to be complete with respect to a given target concept and 

instance space, if the domain theory covers every positive example in the instance space. 

• But our definition of completeness does not require that the domain theory be able to 

prove that negative examples do not satisfy the target concept. 

• So we now with help of PROLOG-EBG explain definition of completeness includes full 

coverage of both positive and negative examples by the domain theory. 

PROLOG-EBG Algorithm: 

PROLOG-EBG is a sequential covering algorithmthat considers the training data incrementally. 
 

For each new positive training example that is not yet covered by a learned Horn clause, it forms 

a new Horn clause by: 

(1) explaining the new positive training example, 

(2) analyzing this explanation to determine an appropriate generalization, and 



(3) refining the current hypothesis by adding a new Horn clause rule to cover this positive 

example, as well as other similar instances. 
 

 
 

Fig 2. Explanation of training example 

The bottom of this figure depicts in graphical form of +ve training example Sa eToStack( Objl , 

0bj2 ) from Table 1. The top of the figure depicts the explanation constructed for this training 

example. Notice the explanation, or proof, states that it is SafeToStackObjl on 0bj2 because Objl 

is Lighter than Obj2. Furthermore, Objl is known to be Lighter, because its Weight can be inferred 

from its Density and Volume, and because the Weight of 0bj2 can be inferred from the default 

weight of an Endtable. The specific Horn clauses that underlie this explanation are shown in the 

domain theory of Table 1 . Notice that the explanation mentions only a small fraction of the 

known attributes of Objl and 0bj2 (i.e., those attributes corresponding to the shaded region in 

the figure). While only a single explanation is possible for the training exa   ple and domain 

theory shown here, in general there may be multiple possible explanations. In such cases, any or 

all of the explanations may be used. In the case of PROLOG-EBG, the explanation is generated 

using a backward chaining search as performed by PROLOG. PROLOG, halts once it finds the 

first valid proof. 

For example, the explanation of Figure 2 refers to the Density of Objl, but not to its Owner. 

Therefore, the hypothesis for SafeToStack(x,y) should include Density(x, 0.3), but not Owner(x, 



Fred). By collecting just the features mentioned in the leaf nodes of the explanation in Figure 2 

and substituting variables x and y for Objl and Obj2, we can form a general rule that is justified 

by the domain theory: 

 

 
SafeToStack(x, y)  Volume(x, 2) ^ Density(x, 0.3) ^ Type(y, Endtable) 

 

 

The body of the above rule includes each leaf node in the proof tree, except for the leaf nodes 

"Equal(0.6, times(2,0.3)" and "LessThan(0.6,5)." We omit these two because they are by 

definition always satisfied, independent of x and y. 

The above rule constitutes a significant generalization of the training example, because it omits 

many properties of the example (e.g., the Color of the two objects) that are irrelevant to the target 

concept. PROLOG- EBG computes the most general rule that can be justified by the explanation, 

by computing the weakest preimage of the explanation, defined as follows: 
 

 
 

 

For example, the weakest preimage of the target concept SafeToStack(x,y), with respect to the 

explanation from Table 1, is given by the body of the following rule. This is the most general 

rule that can be justified by the explanation of Figure 2: 
 

Notice this more general rule does not require the specific values for Volume and Density that 

were required by the first rule. Instead, it states a more general constraint on the values of these 

attributes. The below figure depicts weakest preimage of SafeToStack. 



 
 

The Weakest Preimage of target concept w.r.t explanation is produced by regression. It works 

iteratively through explanation first computing weakest preimage then weakest preimage of 

resulting expression and so on. It terminates when it has completed iterating all over steps in 

explanation and yields weakest condition of target concept. 
 

 

REMARKS ON EXPLANATION-BASED LEARNING 

• Unlike inductive methods, PROLOG-EBG produces justified general hypotheses by 

using prior knowledge to analyze individual examples. 
 

• The explanation of how the example satisfies the target concept determines which 

example attributes are relevant: those mentioned by the explanation. 
 

• The further analysis of the explanation, regressing the target concept to determine its 

weakest preimage with respect to the explanation, allows deriving more general 

constraints on the values of the relevant features. 

• The generality of the learned Horn clauses will depend on the formulation of the domain 

theory and on the sequence in which training examples are considered. 

• PROLOG-EBG implicitly assumes that the domain theory is correct and complete. If the 

domain theory is incorrect or incomplete, the resulting learned concept may also be 

incorrect. 



There are several related perspectives on explanation-based learning that help to understand its 

capabilities and limitations. 

➢ EBL as theory-guided generalization of examples. EBL uses its given domain theory to 

generalize rationally from examples, distinguishing the relevant ex- ample attributes from 

the irrelevant, thereby allowing it to avoid the bounds on sample complexity that apply to 

purely inductive learning. 

➢ EBL as example-guided reformulation of theories. The PROLOG-EBG algorithm can 

be viewed as a method for reformulating the domain theory into a more operational 

formby creating rules that (a) follow deductively from the domain theory, and (b) classify 

the observed training examples in a single inference step. Thus, the learned rules can be 

seen as a reformulation of the domain theory classifying instances of the target concept in 

a single inference step. 

➢ EBL as "just" restating what the learner already "knows. " In one sense, the learner 

in our SafeToStack example begins with full knowledge of the Safe- ToStack concept.If 

its initial domain theory is sufficient to explain any observed training examples, then it is 

also sufficient to predict their classification in advance. 
 

EXPLANATION-BASED 

KNOWLEDGE 
LEARNING OF SEARCH CONTROL 

 

• The practical applicability of the PROLOG-EBG algorithm is restricted by its 

requirement that the domain theory be correct and complete. 

• This EBL can be used in search programs(ex: chess game). 

• One system that employs explanationbased learning is to implement search is PRODIGY. 

• PRODIGY is domain independent planning system that accepts the problem in terms of 

state space S and operators O. 

• It then solves the problem to find sequence of operators O that lead from initial state Si to 

state that reach goal G. 
 

• PRODIGY divides the 

solutions to final one. 
problem into sub problem and solves them and combines all 

 

• For example, one target concept is "the set of states in which subgoal A should be solved 

before subgoal B." An example of a rule learned by PRODIGY for this target concept in 

a simple block-stacking problem domain is 
 



The goal of block-staking problem is to stack the blocks so that they spell the word "universal." 

PRODIGY would decompose this problem into several subgoals to be achieved. Notice the 

above rule matches the subgoalsOn(U, N) and On(N, I), and recommends solving the subproblem 

On(N, I) before solving On(U, N). The justification for this rule (and the explanation used by 

PRODIGY to learn the rule) is that if we solve the subgoals in the reverse sequence, we will 

encounter a conflict in which we must undo the solution to the On(U, N) subgoal in order to 

achieve the other subgoal On(N, I). 

PRODIGY learns by first encountering such a conflict, then explaining to itself the reason for this 

conflict and creating a rule such as the one above. 

The net effect is that PRODIGY uses domain-independent knowledge about possible subgoal 

conflicts, together with domain-specific knowledge of specific operators (e.g., the fact that the 

robot can pick up only one block at a time), to learn useful domain-specific planning rules such as 

the one illustrated above. 



Unit-V 

Analytical Learning-1 

Combing Inductive and Analytical Learning: 

Motivation: 
 

• two paradigms for machine learning: inductive learning and analytical learning. 
 

• Purely analytical learning methods offer the advantage of generalizing more accurately 

from less data by using prior knowledge to guide learning. However, they can be misled 

when given incorrect or insufficient prior knowledge. 

Eg: PROLOG-EBG, seek general hypotheses that fit prior knowledge while covering the 

observed data. 

• Purely inductive methods offer the advantage that they require no explicit prior knowledge 

and learn regularities based solely on the training data. However, they can fail when given 

insufficient training data, and can be misled by the implicit inductive bias they must adopt 

in order to generalize beyond the observed data. 

Eg : decision tree induction and neural network BACKPROPAGATION, seek general 

hypotheses that fit the observed training data. 

• Combining them offers the possibility of more powerful learning methods. 

 

 

Differnces between Inductive Learning and Analytical Learning 
 

Inductive Learning Analytical Learning 

These methods seek general hypotheses that fit 

the observed training data. 

These methods seek general hypotheses that 

fit prior knowledge while covering the 

observed data. 

These offer the advantage that they require no 

explicit prior knowledge and learn regularities 

based solely on the training data 

These offer the advantage of generalizing 

more accurately from less data by using prior 

knowledge to guide learning. 

The output hypothesis follows from statistical 

arguments that the training sample is 

The output hypothesis follows deductively 

from the domain theory and training 



sufficiently large that it is probably 

representative of the underlying distribution of 

example 

examples. 

The disadvantage is they can fail when given 

insufficient training data, and can be misled by 

the implicit inductive bias they must adopt in 

order to generalize beyond the observed data 

The disadvantage is they can be misled when 

given incorrect or insufficient prior 

knowledge. 

These provide statistically justified hypotheses These provide logically justified hypotheses. 

Inductive methods are Decision tree 

,Backpropagation 

Analytical methods are PROLOG-EBG 

 
 

❖ The two approaches work well for different types of problems. By combining them we can 

hope to devise a more general learning approach that covers a more broad range of learning 

tasks. Fig1,a spectrum of learning problems that varies by the availability of prior 

knowledge and training data. At one extreme, a large volume of training data is 

available, but no prior knowledge. At the other extreme, strong prior knowledge is 

available, but little training data. Most practical learning problems 

between these two extremes of the spectrum. 

lie somewhere 

 

 

 
 

Fig 1 : A Spectrum of learning tasks 
 

At the left extreme, no prior knowledge is available, and purely inductive learning methods with 

high sample complexity are therefore necessary. At the rightmost extreme, a perfect domain 

theory is available, enabling the use of purely analytical methods such as PROLOG-EBG. Most 

practical problems lie somewhere between these two extremes 

 

 

 

 

 

Some specific properties we would like from such a learning method include: 



• Given no domain theory, it should learn at least as effectively as purely inductive 

methods. 

•  Given a perfect domain theory, it should learn at least as effectively as purely analytical 

methods. 

•  Given an imperfect domain theory and imperfect training data, it should combine the two 

to outperform either purely inductive or purely analytical methods. 

• It should accommodate an unknown level of error in the training data. 
 

• It should accommodate an unknown level of error in the domain theory. 
 

 
 

INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING 
 

The Learning Problem 

Given: 

• A set of training examples D, possibly containing errors 
 

• A domain theory B, possibly containing errors 
 

• A space of candidate hypotheses H 
 

Determine: 
 

• A hypothesis that best fits the training examples and domain theory 

Which hypothesis to consider? 

 One which fits training data well 
 

 One which fits domain theory well 
 

errorD(h) is defined to be the proportion of examples from D that are misclassified by h. Let us 

define the error errorB(h) of h with respect to a domain theory B to be the probability that h will 

disagree with B on the classification of a randomly drawn instance. We 

characterize the desired output hypothesis in terms of these errors. 

can attempt to 

 

We require hypothesis that could minimize some combined measures of hypothesis such as 
 



At first instance it satisfies, it is not clear what values to assign to kDand kB to specify the relative 

importance of fitting the data versus fitting the theory. 

If we have poor theory and great deal of data the error w.r.t D weight more heavily and if we have 

strong theory and noisy data the error w.r.t B weight more heavily.so the learner doesn’t know 

about training data and domain theory to unclear these components. 

So to weight these we use Bayes theorem. Bayes theorem describes how to compute the posterior 

probability P(h/D) of hypothesis h given observed training data D.Bayes theorem computes this 

posterior probability based on the observed data D, together with prior knowledge in the form of 

P(h), P(D), and P(D/h).we can think of P(h), P(D), and P(D/h) as a form of background knowledge 

or domain theory.Here we should choose hypothesis whose posterior probability is high. If P(h), 

P(D), and P(D/h) these are not perfectly known then Bayes theorem alone does not prescribe how 

to combine them with the observed data. Then, we have to assume prior probabilistic values for 

P(h), P(D), and P(D/h). 

Hypothesis space search: 
 

We can characterize most learning methods as search algorithms by describing the hypothesis 

space H they search, the initial hypothesis ho at which they begin their search, the set of search 

operators 0 that define individual search steps, and the goal criterion G that specifies the search 

objective. 

three different methods are: 
 

• Use prior knowledge to derive an initial hypothesis from which to begin the search. 

In this approach the domain theory B is used to construct an initial hypothesis ho that is 

consistent with B. A standard inductive method is then applied, starting with the initial 

hypothesis ho. 

• Use prior knowledge to alter the objective of the hypothesis space search. In this 

approach, the goal criterion G is modified to require that the out- put hypothesis fits the 

domain theory as well as the training examples. 

• Use prior knowledge to alter the available search steps. In this approach, the set of 

search operators 0 is altered by the domain theory. 

USING PRIOR KNOWLEDGE TO INITIALIZE THE HYPOTHESIS 

One approach to using prior knowledge is to initialize the hypothesis to perfectly fit the domain 

theory, then inductively refine this initial hypothesis as needed to fit the training data. This 

approach is used by the KBANN (Knowledge-Based Artificial Neural Network) algorithm to learn 

artificial neural networks. 



In KBANN, initial network is first constructed for every instance, the classification assigned by 

the network is identical to that assigned by the domain theory. Backpropagation algorithm is 

employed to adjust the weights of initial network as needed to fit training examples. 

If the initial hypothesis is found to imperfectly classify the training examples, then it will be refined 

inductively to improve its fit to the training examples (Backpropagation algorithm). If the domain 

theory is correct, the initial hypothesis will correctly classify all the training examples. 

The intuition behind KBANN is that even if the domain theory is only approximately correct, 

initializing the network to fit this domain theory will give a better starting approximation to the 

target function than initializing the network to random initial weights. 

The KBANN Algorithm 
 

It first initializes the hypothesis approach to using domain theories.It assumes a domain theory 

represented by a set of propositional, nonrecursive Horn clauses. 
 

The two stages of the KBANN algorithm are first to create an artificial neural network that 

perfectly fits the domain theory and second to use the BACKPROPAGATION algorithm to 

refine this initial network to fit the training examples 
 

 

EXAMPLE: 



Here each instance describes a physical object in terms of the material from which it is made, 

whether it is light, etc. The task is to learn the target concept Cup defined over such physical 

objects. The domain theory defines a Cup as an object that is Stable, Liftable, and an 

OpenVessel. The domain theory also defines each of these three attributes in terms of more 

primitive attributes and all those attributes describe the instances. 

 

 

 

 

 

Table 1. describes a set of training examples and a do- main theory for the Cup target concept 
 

Table 1. The Cup Learning Task 
 

Here the domain theory is inconsistent because the domain theory fails to classify two and three 

training examples. KBANN uses the domain theory and training examples together to learn the 

target concept more accurately than it could from either alone. 

1. In First stage, Initial network is constructed consistent with domain theory 



2. KBANN follows the convention that a sigmoid output value greater than 0.5 is interpreted 

as True and a value below 0.5 as False. 

3. Each unit is therefore constructed so that its output will be greater than 0.5 just in those 

cases where the corresponding Horn clause applies. 

4. for each input corresponding to a non-negated antecedent,the weight is set to some positive 

constant W. For each input corresponding to a negated antecedent, the weight is set to - W. 

5. The threshold weight of the unit, wo is then set to -(n- .5) W, where n is the number of non-

negated antecedents. 

When i/p values are 1 or 0 then weightedsum+ w0 will be +ve , if all antecedents are 

satisfied. 

6. Each sigmoid unit input is connected to the appropriate network input or to the output of 

another sigmoid unit, to mirror the graph of dependencies among the corresponding 

attributes in the domain theory. As a final step many additional inputs are added to each 

threshold unit, with their weights set approximately to zero. 

 

Fig 2. A Neural network equivalent to domain theory 
 

The solid lines in the network of Figure 2 indicate unit inputs with weights of W, whereas the 

lightly shaded lines indicate connections with initial weights near zero. 
 

7. The second stage 

BACKPROPAGATION 
of KBANN uses the training examples and the 

algorithm to refine the initial network weights, if the intial 

network is not consistent with theory. If consistent no need of backpropagation. 



8. But our example is not consistent so we perform backpropagation 
 

 
 

Figure 3, with dark solid lines indicating the largest positive weights, dashed lines indicating the 

largest negative weights, and light linesindicating negligible weights. 

 

 

 

 

Fig 3. Result of inductively refined neural network. 
 

REMARKS: 
 

• The chief benefit of KBANN over purely inductive BACKPROPAGATION is that it 

typically generalizes more accurately than BACKPROPAGATION when given an 

approximately correct domain theory, especially when training data is scarce. 

• Limitations of KBANN include the fact that it can accommodate only propositional 

domain theories; that is, collections of variable-free Horn clauses. It is also possible for 

KBANN to be misled when given highly inaccurate domain theories, so that its 

generalization accuracy can deteriorate below the level of BACKPROPAGATION 



USING PRIOR KNOWLEDGE TO ALTER THE SEARCH OBJECTIVE 

• The above approach begins the gradient descent search with a hypothesis that perfectly 

fits the domain theory, then perturbs this hypothesis as needed to maxi 

training data. 

ize the fit to the 

 

• An alternative way of using prior knowledge is to incorporate it into the error criterion 

minimized by gradient descent, so that the network must fit a combined function of the 

training data and domain theory. 

EBNN Algorithm 
 

The EBNN (Explanation-Based Neural Network learning) algorithm (Mitchell and Thrun 1993a; 

Thrun 1996) builds on the TANGENTPROP algorithm in two significant ways. 
 

• First, instead of relying on the user to provide training derivatives, EBNN computes 

training derivatives itself for each observed training example. These training derivatives 

are calculated by explaining each training example in terms of a given domain theory, then 

extracting training derivatives from this explanation. (how to select mue). 

• Second, EBNN addresses the issue of how to weight the relative importance of the 

inductive and analytical components of learning 
 

Fig 4. Modified error function from tangent prop algorithm. 

value of µ is chosen independently for each training example. 

The inputs to EBNN include (1) a set of training examples of the form (xi, f (xi)) with no training 

derivatives provided, and (2) a domain theory analogous to that used in explanation-based 

learning and in KBANN, but represented by a set of previously trained neural networks rather than 

a set of Horn clauses. The output of EBNN is a new neural network that approximates the target 

function f. 

To illustrate the type of domain theory used by EBNN, consider Figure . The top portion of this 

figure depicts an EBNN domain theory for the target function Cup, with each rectangular block 

representing a distinct neural network in the domain theory. Notice in this example there is one 

network for each of the Horn clauses in the symbolic domain theory of Table 1. For example, the 

network labeled Graspable takes as input the description of an instance and produces as output a 

value indicating whether the object is graspable (EBNN typically repre- sents true propositions 

by the value 0.8 and false propositions by the value 0.2). This network is analogous to the Horn 



clause for Graspable given in Table 1. Some networks take the outputs of other networks as their 

inputs (e.g., the right- most network labelled Cup takes its inputs from the outputs of the Stable, 

Liftable, and OpenVessel networks). Thus, the networks that make up the domain theory can be 

chained together to infer the target function value for the input instance, just as Horn clauses might 

be chained together for this purpose. In general, these domain theory networks may be provided 

to the learner by some external source, or they may be the result of previous learning by the same 

system. EBNN makes use of these domain theory networks to learn the newtarget function. It does 

not alter the domain theory networks during this process. 
 



The goal of EBNN is to learn a new neural network to describe the target function. We will refer 

to this new network as the target network. In the example of Figure, the target network Cup,,,,,, 

shown at the bottom of the figure takes as input the description of an arbitrary instance and outputs 

a value indicating whether the object is a Cup.EBNN algorithm uses a domain theory expressed 

as a set of previously learned neural networks, together with a set of training examples, to train 

its output hypothesis 

 

 
USING PRIOR KNOWLEDGE TO AUGMENT SEARCH OPERATORS 

In this section we consider a third way of using prior knowledge to alter the hypothesis space 

search: using it to alter the set of operators that define legal steps in the search through the 

hypothesis space. This approach is followed by systems such as FOCL 

The FOCL Algorithm 
 

• FOCL is an extension of the purely inductive FOIL system.It also employees sequential 

covering algorithm (generic to specific search) 

• Both FOIL and FOCL learn a set of first-order Horn clauses to cover the observed 

training examples 

• Difference is FOCL considers Domain Theory. 
 

The solid edges in the search tree of Figure 6 show the general-to-specific search steps considered 

in a typical search by FOIL. The dashed edge in the search tree of Figure 6 denotes an additional 

candidate specialization that is considered by FOCL and based on the domain theory. 

To describe operation FOCL operation, we must know about operational and non operational 

literals .operational literals are the 12 attributes describing the training sample where asnon 

operational are intermediate feature that occurs in domain theory. 

For example in fig 6 ,One kind adds a single new literal (solid lines.in the figure). A second kind 

of operator specializes the rule by adding a set of literals that constitute logically sufficient 

conditions for the target concept, according to the domain theory (dashed lines in the figure). 



 
 

Fig 5. Cup target concept (Training examples and domain theory) 
 

Fig 6. Hypothesis space search in foil 



FOCL expands its current hypothesis h using the following two operators: , 
 

1. For each operational literal that is not part of h, create a specialization of h by adding this single 

literal to the preconditions. This is also the method used by FOIL to generate candidate successors. 

he solid arrows in Figure 6 denote this type of specialization. 

2. Create an operational, logically sufficient condition for the target concept according to the 

domain theory. Add this set of literals to the current preconditions of h. Finally, prune the 

preconditions of h by removing any literals that are unnecessary according to the training data. 

The dashed arrow in Figure 6 denotes this type of specialization. 

• FOCL first selects one domain theory clause whose post condidtion (head) matches the 

target concept. If there are more such clauses then it selects whose preconditions have 

highest information. 

• For example in the above figure Cup Stable, Liftable, Openvessel 

• Now each non operational literal is replaced with its sufficient i.e. instead of Stable we 

replace BottomIsFlat similarly we do for all… this process is unfolding 

• Then   it   looks   like BottomIsFlat , HasHandle, Light, HasConcavity , 

ConcavityPointsUp 

• As a final step in generating the candidate specialization, this sufficient condition is pruned. 

For each literal in the expression, the literal is removed unless its removal reduces 

classification accuracy over the training examples. Pruning (removing) the literal 

HasHandleresults in improved performance. 

• BottomZsFlat , Light, HasConcavity , ConcavityPointsUp 

this hypothesis is the result of the search step shown by the dashed arrow in Figure 

• Once candidate specializations of the current hypothesis have been gener- ated, using both 

of the two operations above, the candidate with highest information gain is selected. 

FOCL learns Horn clauses of the form c 0i ^ 0b ^ 0f 

where c is the target concept, 0i is an initial conjunction of operational literals added one at a time 

by the first syntactic operator, 0b is a conjunction of operational literals added in a single step 

based on the domain theory, and 0f is a final conjunction of operational literals added one at a time 

by the first syntactic operator. 

REINFORCEMENT LEARNING 

Each time the agent performs an action in its environment, a trainer may provide a reward or 

penalty to indicate the desirability of the resulting state. For example, when training an agent to 

play a game the trainer might provide a positive reward when the game is won, negative reward 

when it is lost, and zero reward in all other states. The task of the agent is to learn from this 



indirect, delayed reward, to choose sequences of actions that produce the greatest cumulative 

reward. 
 

• These algorithms are 

optimization problems. 
dynamic programming algorithms frequently used to solve 

• For example, a mobile robot may have sensors such as a camera and sonars, and actions 

such as "move forward" and "turn." Its task is to learn a control strategy, or policy, for 

choosing actions that achieve its goals. 
 

Fig 7. Reinforcement learning 
 

Figure 7 tells, An agent interacting with its environment. The agent exists in an environment 

described by some set of possible states S. It can perform any of a set of possible actions A. Each 

time it performs an action at in some state st the agent receives a real-valued reward rt, that 

indicates the immediate value of this state-action transition. This produces a sequence of states 



si, actions ai, and immediate rewards ri as shown in the figure. The agent's task is to learn a control 

policy, π : S A, that maximizes the expected sum of these rewards, with future rewards discounted 

exponentially by their delay. 

• One of best application of reinforcement learning is: 

 
Tesauro (1995) describes the TD-GAMMON program, which has used reinforcement 

learning to become a world-class backgammon player. This program, after training on 1.5 

million self-generated games, is now considered nearly equal to the best human players in 

the world and has played competitively against top-ranked players in international 

backgammon tournaments. 

Reinforcement learning problem differs from other function approximation tasks 
 

• Delayed reward: The trainer provides only a sequence of immediate reward values as the 

agent executes its sequence of actions. The agent, therefore, faces the problem of temporal 

credit assignment: determining which of the actions in its sequence are to be credited with 

producing the eventual rewards. 

• Exploration: The learner faces a tradeoff in choosing whether to favor exploration of 

unknown states and actions (to gather new information), or exploitation of states and 

actions that it has already learned will yield high reward (to maximize its cumulative 

reward). 

• Partially observable states. Although it is convenient to assume that the agent's sensors 

can perceive the entire state of the environment at each time step, in many practical 

situations sensors provide only partial information. 

For example, a robot with a forward-pointing camera cannot see what isbehind it. In such 

cases, it may be necessary for the agent to consider its previous observations together 

with its current sensor data when choosing actions, and the best policy may be one that 

chooses actions specifically to improve the observability of the environment 

• Life-long learning. Unlike isolated function approximation tasks, robot learning often 

requires that the robot learn several related tasks within the same environment, using the 

same sensors. 

For example, a mobile robot may need to learn how to dock on its battery charger, how to 

navigate through nar- row corridors, and how to pick up output from laser printers. This 

setting raises the possibility of using previously obtained experience or knowledge to 

reduce sample complexity when learning new tasks. 



 

Learning Task 

• In a Markov decision process (MDP) the agent can perceive a set S of distinct states of its 

environment and has a set A of actions that it can perform. 

•  At each discrete time step t, the agent senses the current state st, chooses a current action 

‘a’ and performs it. 

• The environment responds by giving the agent a reward r = r (st, a,) and by producing the 

succeeding state st+1 = f(st,at). 

• Here the functions f and r are part of the environment and are not necessarily known to 

the agent. 

• In MDP, f(st,at) and r(st,at) depend on current state or action ,not on earlier state or 

action. 

• The task of the agent is to learn a policy, π : S A, for selecting its next action at, based 

on the current observed statest. 
 

• The policy which maximizes the above value is optimal policy i.e. which produces the 

greatest possible cumulative reward 

Here we illustrate above with an example: 
 

1. The six grid squares in this diagram represent six possible statesfor the agent. 

2. Each arrow in the diagram represents a possible action the agent can take to move from 

one state to another. 

3. The immediate reward in this particular environment is defined to be zero for all state- 

action transitions except for those leading into the state labeled G. 

4. The state G is goal state , if the agent enters into this state remains in this state and can 

receive the reward and we also call G as absorbing state. 

5. Once all states, actions, immediate rewards are defined then we choose value for discount 

factorγ 



6. Here we assume γ=0.9. The value of V* for this state is 100 because the optimal policy in 

this state selects the "move up" action that receives immediate reward 100. Thereafter, 

the agent will remain in the absorbing state and receive no further rewards. 

7. Similarly, the value of V* for the bottom center state is 90. This is because the optimal 

policy will move the agent from this state to the rightthen upward (generating an immediate 

reward of 100). Thus, the discounted future reward from the bottom center state is 0+ γ 

(100) + γ2(0) + γ3(0) + =90 (policy that direct along shortest path to 

G) 
 

 

 
 

 

Fig 8. A simple deterministic world to explain basic of Q-Learning 



 
 

Q LEARNING: 

It is difficult to learn the function π* : S A directly, because the available training data does not 

provide training examples of the form (s, a). Intsead the training information is the sequence of 

immediate rewards r(si, ai) for i = 0, 1,2, . . . . This kind of information is easier to learn 

evaluation function defined over states or actions that implement optimal policy. 
 

The agent can acquire the optimal policy by learning V*, provided it has perfect knowledge of 

the immediate reward function r and the state transition function δ. When the agent knows the 

functions r and δ used by the environment to respond to its actions, it can then use Equation to 

calculate the optimal action for any state s. 

                                  (1) 

Only when we have the perfect knowledge on δ and r then by using the equation we can lear 

optimal policy. But incase if we donnot know the values we cant evaluate equation. So we go for 

Q Equation. 

Q Equation: 
 

Let us define the evaluation function Q(s, a) so that its value is the maximum dis- counted 

cumulative reward that can be achieved starting from state s and applying action a as the first 

action. 

                (2) 

Q(s, a) is exactly the quantity that is maximized in Equation (stated in Q Learning) in order to 

choose the optimal action a in state s. Therefore, we can rewrite that Equation in terms of Q(s, a) 

as 

        (3) 

Now if the agent learns Q function even if he is not having knowledge of δ and r we can find the 

optimal policy. 



 

Algorithm for Q-Learning: 
 

relationship between Q and V*,V*(S) = max Q(s, a') 

a' 

 

 

 

 
(4)  

 

now rewriting the equation (2) 
 

 

 
 

 
 

To describe the algorithm, we 

(5)  

will use the symbol Q^, of the actual Q function. The agent 

repeatedly observes its current state s, chooses some action a, executes this action, then observes 

the resulting reward r’ = r(s, a) and the new state s' =δ (s, a). It then updates the table entry for 

Q^(s, a) following each such transition, according to the rule: 
 

 



 

Example: 

To illustrate the operation of the Q learning algorithm, consider a single action taken by an agent, 

and the corresponding refinement to Q^ shown in Figure. In this example, the agent moves one 

cell to the right in its grid world and receives an immediate reward of zero for this transition. It 

then applies the training rule of Equation (5) to refine its estimate Q^ for the state-action transition 

it just executed. According to the training rule, the new Q^ estimate for this transition is the sum 

of the received reward (zero) and the highest Q^ value associated with the resulting state (100), 

discounted by y (0.9). Each time the agent moves forward from an old state to a new one, Q 

learning propagates Q^ estimates backward from the new state to the old. At the same time, the 

immediate reward received by the agent for the transition is used to augment these propagated 

values of Q^. 

Consider applying this algorithm to above mentioned example in Learning and then training 

consists series of episodes. when thisepisodes reach end the agent is transported to a new, 

randomly chosen, initial state for the next episode. 
 
 

 

NONDETERMINISTIC REWARDS AND ACTIONS 

• Above we considered Q-Learning as deterministic, now we take as nondeterministic in 

which the reward function r(s, a) and state transition function f(s, a) may have probabilistic 

outcomes. 



• In such cases, the functions delta(s, a) and r(s, a) can be viewed as first producing a 

probability distribution over outcomes based on s and a, and then drawing an outcome at 

random according to this distribution 

• When these probabilistic outcomes doesnot depend on previous state or action then we call 

that as nondeterministic Markov decision process. 

• Now we extend the Q-Learning deterministic case to handle nondeterministic MDPs. 
 

• In the nondeterministic case we must first restate the objective of the learner to take that 

outcomes are no longer deterministic. 

• The generalization is to redefine the value of policy to bethe expected value (over these 

nondeterministic outcomes) of the discounted cumulative reward received by applying this 

policy 
 

Next we generalize our earlier definition of Q from Equation, again by taking its expected 

value. 
 
 
 

• To summarize, we have simply redefined Q(s, a) in the nondeterministic case to be the 

expected value of its previously defined quantity for the deterministic case. 



TEMPORAL DIFFERENCE LEARNING 

• Q learning is a special case of a general class of temporal difference algorithms 

that learn by reducing discrepancies between estimates made by the agent at 

different times. 

• Temporal difference (TD) learning refers to a class of model-free 

reinforcement learning methods which learn by bootstrapping from the current 

estimate of the value function. 

GENERALIZING FROM EXAMPLES 

The algorithms we discussed perform a kind of rote learning and make no attempt to 

estimate the Q value for unseen state-action pairs by generalizing from those that have 

been seen. 

It is easy to incorporate function approximation algorithms such as BACK- 

PROPAGATION into the Q learning algorithm, by substituting a neural network 

for the lookup table and using each Q^(s, a) update as a training example. 

In practice, a number of successful reinforcement learning systems have been 

developed by incorporating such function approximation algorithms in place of 

the lookup table. Tesauro's successful TD-GAMMON program for playing 

backgammon used a neural network and the BACKPROPAGATION algorithm 

together with a TD(λ) training rule
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