
DESIGN AND ANALYSIS OF ALGORITHMS

Page 1 Dr.T. SRIKANTH|Associate Professor|CSE|MRITS

DESIGN AND ANALYSIS OF
ALGORITHMS

LECTURE MATERIAL

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

(2022-2023)

NAME OF THE FACULTY: Dr. T. Srikanth & Dr.Y.Madhusekhar

YEAR: III-I

ACADEMIC YEAR 2022-2023

REGULATION R18

Page 3 Dr.T. SRIKANTH|Associate Professor|CSE|MRITS

R18 B.Tech. CSE Syllabus JNTU HYDERABAD

CS603PC: DESIGN AND ANALYSIS OF ALGORITHMS

III Year B.Tech. CSE II-Sem L T P C
3 1 0 4

Prerequisites:
1. A course on “Computer Programming and Data Structures”
2. A course on “Advanced Data Structures”
Course Objectives:

➢ Introduces the notations for analysis of the performance of algorithms.
➢ Introduces the data structure disjoint sets.
➢ Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic
➢ programming, greedy, branch and bound methods) and mention problems for

which each technique is appropriate;
➢ Describes how to evaluate and compare different algorithms using worst-, average-, and

best-case analysis.
➢ Explains the difference between tractable and intractable problems, and introduces the

problems that are P, NP and NP complete.

Course Outcomes:

➢ Ability to analyze the performance of algorithms
➢ Ability to choose appropriate data structures and algorithm design methods for a specified

application
➢ Ability to understand how the choice of data structures and the algorithm design methods

impact the performance of programs.

UNIT - I
Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity,
Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh
notation.
Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen’s
matrix multiplication.
UNIT - II
Disjoint Sets: Disjoint set operations, union and find algorithms
Backtracking: General method, applications, n-queen’s problem, sum of subsets problem,
graph coloring
UNIT - III
Dynamic Programming: General method, applications- Optimal binary search trees, 0/1
knapsack problem, All pairs shortest path problem, Traveling sales person problem,
Reliability design.
UNIT - IV
Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem,
Minimum cost spanning trees, Single source shortest path problem.
UNIT - V
Branch and Bound: General method, applications - Travelling sales person problem, 0/1
knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.
NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP -
Hard and NP-Complete classes, Cook’s theorem.

TEXT BOOK:
1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan,
University Press

Page 4 Dr.T. SRIKANTH|Associate Professor|CSE|MRITS

REFERENCE BOOKS:
1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and
C. Stein, PHI Pvt. Ltd./ Pearson Education.
3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and
R. Tamassia, John Wiley and sons.

Course outcomes:

1. Ability to analyze the performance of algorithms

2. Describe the data structures of graph coloring, back tracking and disjoint sets.

3. Solves the problems on Knapsack problem, Job sequencing with deadlines, Minimum cost

spanning trees, Single source shortest path problem.

4. Develop algorithms using greedy method

5. Choose Branch and Bound, NP class problems and formulate solutions using standard approaches

 DESIGN AND ANALYSIS OF ALGORITHMS

1

Algorithm:
An Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be

performed with a finite amount of effort in a finite length of time. No matter what the input values
may be, an algorithm terminates after executing a finite number of instructions. In addition every
algorithm must satisfy the following criteria:

• Input: there are zero or more quantities, which are externally supplied;

• Output: at least one quantity is produced

• Definiteness: each instruction must be clear and unambiguous;

• Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will
terminate after a finite number of steps;

• Effectiveness: every instruction must be sufficiently basic that it can in principle be carried out
by a person using only pencil and paper. It is not enough that each operation be definite, but it
must also be feasible.

In formal computer science, one distinguishes between an algorithm, and a program. A program does
not necessarily satisfy the fourth condition. One important example of such a program for a computer
is its operating system, which never terminates (except for system crashes) but continues in a wait
loop until more jobs are entered.

We represent algorithm using a pseudo language that is a combination of the constructs of a

programming language together with informal English statements.

Psuedo code for expressing algorithms:

Algorithm Specification: Algorithm can be described in three ways.
1. Natural language like English: When this way is choused care should be taken, we
should ensure that each & every statement is definite.

2. Graphic representation called flowchart: This method will work well when the
algorithm is small& simple.

3. Pseudo-code Method: In this method, we should typically describe algorithms as
program, which resembles language like Pascal & Algol.

Pseudo-Code Conventions:

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces {and}.

3. An identifier begins with a letter. The data types of variables are not explicitly declared.

UNIT I:

Introduction- Algorithm definition, Algorithm Specification, Performance Analysis- Space
complexity, Time complexity, Randomized Algorithms.
Divide and conquer- General method, applications - Binary search, Merge sort, Quick sort,

Strassen’s Matrix Multiplication.

 DESIGN AND ANALYSIS OF ALGORITHMS

2

4. Compound data types can be formed with records. Here is an

example, Node. Record
{

data type – 1 data-1;
.
.
.

data type – n data –
n; node * link;

}

Here link is a pointer to the record type node. Individual data items of a record

can be accessed with and period.

5. Assignment of values to variables is done using the assignment statement.

<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.

 Logical Operators AND, OR, NOT

Relational Operators <, <=,>,>=, =, !=

7. The following looping statements are employed.

For, while and repeat-until

While Loop:
While < condition > do
{

<statement-1>
.
.
.

<statement-n>

}
For Loop:

For variable: = value-1 to value-2 step step do

{

<statement-1>
.
.

.
<statement-
n>
}
repeat-until:

repeat

<statement-1>
.
.
.

 DESIGN AND ANALYSIS OF ALGORITHMS

3

<statement-
n> until<condition>

8. A conditional statement has the following forms.

 If <condition> then <statement>

 If <condition> then <statement-
1> Else <statement-1>

Case statement:

Cas
e

{

}

: <condition-1> : <statement-1>

.

.

.
: <condition-n> : <statement-n>
: else : <statement-n+1>

 DESIGN AND ANALYSIS OF ALGORITHMS

4

9. Input and output are done using the instructions read & write.

10. There is only one type of

procedure: Algorithm, the heading

takes the form,

Algorithm <Name> (<Parameter lists>)

 As an example, the following algorithm fields & returns the maximum of ‘n’

given numbers:

1. Algorithm Max(A,n)

2. // A is an array of size
n 3. {
4. Result := A[1];
5. for I:= 2 to n do
6. if A[I] > Result then
7. Result :=A[I];
8. return
Result; 9. }

In this algorithm (named Max), A & n are procedure parameters. Result & I are

Local variables.

 Performance Analysis:

The performance of a program is the amount of computer memory and time needed
to run a program. We use two approaches to determine the performance of a
program. One is analytical, and the other experimental. In performance analysis we
use analytical methods, while in performance measurement we conduct experiments.

Time Complexity:
The time needed by an algorithm expressed as a function of the size of a problem

is called the time complexity of the algorithm. The time complexity of a program is the
amount of computer time it needs to run to completion.

The limiting behavior of the complexity as size increases is called the asymptotic
time complexity. It is the asymptotic complexity of an algorithm, which ultimately
determines the size of problems that can be solved by the algorithm.

The Running time of a program
When solving a problem we are faced with a choice among algorithms. The basis for
this can be any one of the following:
i. We would like an algorithm that is easy to understand code and debug.
ii. We would like an algorithm that makes efficient use of the

computer’s resources, especially, one that runs as fast as possible.

Measuring the running time of a program

The running time of a program depends on factors such as:
1. The input to theprogram.
2. The quality of code generated by the compiler used to create the

object program.
3. The nature and speed of the instructions on the machine used to

 DESIGN AND ANALYSIS OF ALGORITHMS

5

execute the program,
4. The time complexity of the algorithm underlying the program.

Statement S/e Frequency Total

1. Algorithm Sum(a,n) 0 - 0
2.{ 0 - 0
3. S=0.0; 1 1 1
4. for I=1 to n do 1 n+1 n+1
5. s=s+a[I]; 1 n n
6. return s; 1 1 1

7. } 0 - 0

The total time will be 2n+3

Space Complexity:
The space complexity of a program is the amount of memory it needs to run

to completion. The space need by a program has the following components:
Instruction space: Instruction space is the space needed to store the
compiled version of the program instructions.
Data space: Data space is the space needed to store all constant and variable
values. Data space has two components:
• Space needed by constants and simple variables in program.
• Space needed by dynamically allocated objects such as arrays and

class instances.
Environment stack space: The environment stack is used to save
information needed to resume execution of partially completed functions.
Instruction Space: The amount of instructions space that is needed depends
on factors such as:

• The compiler used to complete the program into machine code.

• The compiler options in effect at the time of compilation

• The target computer.

The space requirement s(p) of any algorithm p may therefore be written
as, S(P) = c+ Sp(Instance characteristics)

Where ‘c’ is a constant.

Example 2:

Algorithm sum(a,n)

{
s=0.0;
for I=1 to n
do s= s+a[I];
return s;

}

• The problem instances for this algorithm are characterized by n,the number of
elements to be summed. The space needed d by ‘n’ is one word, since it is of type
integer.

• The space needed by ‘a’a is the space needed by variables of tyepe array of
floating point numbers.

• This is atleast ‘n’ words, since ‘a’ must be large enough to hold the ‘n’ elements to

 DESIGN AND ANALYSIS OF ALGORITHMS

6

be summed.
• So,we obtain

Ssum(n)>=(n+s) [n for a[],one
each for n,I a& s]

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time
and/or storage space requirement of the algorithm in terms of the size ‘n’ of the input
data. Mostly, the storage space required by an algorithm is simply a multiple of the
data size ‘n’. Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the
size ‘n’ of the input data but also on the particular data. The complexity function f(n)
for certain cases are:
1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

Asymptotic Notations:

The following notations are commonly use notations in performance analysis
and used to characterize the complexity of an algorithm:

1. Big–OH (O)
2. Big–OMEGA (Ω),

3. Big–THETA (Θ) and

4. Little–OH (o)

Big–OH O (Upper Bound)

f(n) = O(g(n)), (pronounced order of or big oh), says that the growth rate of f(n) is
less than or equal (<) that of g(n).

Big–OMEGA Ω (Lower Bound)

f(n) = Ω (g(n)) (pronounced omega), says that the growth rate of f(n) is greater

 DESIGN AND ANALYSIS OF ALGORITHMS

7

than or equal to (>) that of g(n).

Big–THETA Θ (Same order)
f(n) = Θ (g(n)) (pronounced theta), says that the growth rate of f(n) equals (=) the
growth rate of g(n) [if f(n) = O(g(n)) and T(n) = Θ (g(n)].

little-o notation

Definition: A theoretical measure of the execution of an algorithm, usually the time or memory
needed, given the problem size n, which is usually the number of items. Informally, saying some
equation f(n) = o(g(n)) means f(n) becomes insignificant relative to g(n) as n approaches infinity.
The notation is read, "f of n is little oh of g of n".
Formal Definition: f(n) = o(g(n)) means for all c > 0 there exists some k > 0 such that 0 ≤ f(n) < cg(n)
for all n ≥ k. The value of k must not depend on n, but may depend on c.

Different time complexities
Suppose ‘M’ is an algorithm, and suppose ‘n’ is the size of the input data.

Clearly the complexity f(n) of M increases as n increases. It is usually the rate of
increase of f(n) we want to examine. This is usually done by comparing f(n) with
some standard functions. The most common computing times are:

O(1), O(log2 n), O(n), O(n. log2 n), O(n2), O(n3), O(2n), n! and nn

Classification of Algorithms

https://xlinux.nist.gov/dads/HTML/algorithm.html

 DESIGN AND ANALYSIS OF ALGORITHMS

8

If ‘n’ is the number of data items to be processed or degree of polynomial or the
size of the file to be sorted or searched or the number of nodes in a graph etc.

1 Next instructions of most programs are executed once or at most only a

few times. If all the instructions of a program have this property, we say
that its running time is a constant.

Log n When the running time of a program is logarithmic, the program
gets slightly slower as n grows. This running time commonly occurs in
programs that solve a big problem by transforming it into a smaller
problem, cutting the size by some constant fraction., When n is a million,
log n is a doubled. Whenever n doubles, log n increases by a constant,
but log n does not double until n increases to n2.

n When the running time of a program is linear, it is generally the case that a

 DESIGN AND ANALYSIS OF ALGORITHMS

9

small amount of processing is done on each input element. This is
the optimal situation for an algorithm that must process n inputs.

n log n This running time arises for algorithms that solve a problem by

breaking it up into smaller sub-problems, solving then independently,
and then combining the solutions. When n doubles, the running time
more than doubles.

n2 When the running time of an algorithm is quadratic, it is practical for use

only on relatively small problems. Quadratic running times typically
arise in algorithms that process all pairs of data items (perhaps in a
double nested loop) whenever n doubles, the running time increases
fourfold.

n3 Similarly, an algorithm that process triples of data items (perhaps in a

triple–nested loop) has a cubic running time and is practical for use only
on small problems. Whenever n doubles, the running time increases eight
fold.

2n Few algorithms with exponential running time are likely to be

appropriate for practical use, such algorithms arise naturally as “brute–
force” solutions to problems. Whenever n doubles, the running time
squares.

Numerical Comparison of Different Algorithms

The execution time for six of the typical functions is given below:

n log2 n n*log2n n2 n3 2n

1 0 0 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65,536

32 5 160 1024 32,768 4,294,967,296

64 6 384 4096 2,62,144 Note 1

128 7 896 16,384 2,097,152 Note 2

256 8 2048 65,536 1,677,216 ????????

Note1: The value here is approximately the number of machine
instructions executed by a 1 gigaflop computer in 5000 years.

Randomized algorithm:
An algorithm that uses random numbers to decide what to do next anywhere in its logic is called
Randomized Algorithm. For example, in Randomized Quick Sort, we use random number to pick the
next pivot (or we randomly shuffle the array). Quicksort is a familiar, commonly used algorithm in
which randomness can be useful. Any deterministic version of this algorithm requires O(n2)
time to sort n numbers for some well-defined class of degenerate inputs (such as an already sorted
array), with the specific class of inputs that generate this behavior defined by the protocol for pivot

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Big_O_notation

 DESIGN AND ANALYSIS OF ALGORITHMS

10

selection. However, if the algorithm selects pivot elements uniformly at random, it has a provably
high probability of finishing in O(n log n) time regardless of the characteristics of the input. Typically,
this randomness is used to reduce time complexity or space complexity in other standard algorithms.

 DESIGN AND ANALYSIS OF ALGORITHMS

11

Divide and Conquer

General
Method:

Divide and conquer is a design strategy which is well known to breaking down efficiency barriers.
When the method applies, it often leads to a large improvement intime complexity. For example, from
O (n2) to O (n log n) to sort theelements.

Divide and conquer strategy is as follows: divide the problem instance into two or more smaller
instances of the same problem, solve the smaller instances recursively, and assemble the solutions to
form a solution of the original instance. The recursion stops when an instance is reached which is too
small to divide. When dividing the instance, one can either use whatever division comes most easily to
hand or invest time in making the division carefully so that the assembly is simplified.

Divide and conquer algorithm consists of two parts:

Divide : Divide the problem into a number of sub problems. The sub problemsare

solved recursively.
Conquer : The solution to the original problem is then formed from the solutionsto

the sub problems (patching together theanswers).

Traditionally, routines in which the text contains at least two recursive calls are called divide and
conquer algorithms, while routines whose text contains only one recursive call are not. Divide–and–
conquer is a very powerful use ofrecursion.

Control Abstraction of Divide and Conquer
A control abstraction is a procedure whose flow of control is clear but whose primary operations

are specified by other procedures whose precise meanings are leftundefined. The control abstraction
for divide and conquer technique is DANDC(P), where P is the problem to be solved.

DANDC (P)
{

if SMALL (P) then return S (p);else
{

divide p into smaller instances p1, p2, …. Pk, k
 1;appl
y DANDC to each of these sub problems;
return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk));

}

}

SMALL (P) is a Boolean valued function which determines whether the input size is small enough so
that the answer can be computed without splitting. If this is so function ‘S’ is invoked otherwise, the

problem ‘p’ into smaller sub problems. Thesesub problems p1, p2, . . . , pk are solved by recursive

application of DANDC.

 DESIGN AND ANALYSIS OF ALGORITHMS

12

If the sizes of the two sub problems are approximately equal then the computingtime of DANDC

Where, T (n) is the time for DANDC on ‘n’ inputs
g (n) is the time to complete the answer directly for small inputsandf (n) is the
time for Divide and Combine

Binary Search:

If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn . When we are given a
element ‘x’, binary search is used to find the corresponding element from the list. In case ‘x’ is present,
we have to determine a value ‘j’ suchthat a[j] = x (successful search). If ‘x’ is not in the list then j is to set
to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and compare ‘x’ with
a[mid]. If x = a[mid] then the desired record has been found.If x < a[mid] then ‘x’ must be in that
portion of the file that precedes a[mid], if there at all. Similarly, if a[mid] > x, then further search is only
necessary in that past ofthe file which follows a[mid]. If we use recursive procedure of finding the
middle key a[mid] of the un-searched portion of a file, then every un-successful comparison of‘x’ with
a[mid] will eliminate roughly half the un-searched portion from consideration.

Since the array size is roughly halved often each comparison between ‘x’ and a[mid], and since an

array of length ‘n’ can be halved only about log2n times before reaching a trivial length, the worst case
complexity of Binary search is about log2n

low and high are integer variables such that each time through the loop either ‘x’ is found or low is
increased by at least one or high is decreased by at least one. Thus we have two sequences of integers
approaching each other and eventually low will become greater than high causing termination in a finite
number of steps if ‘x’ is not present.

 DESIGN AND ANALYSIS OF ALGORITHMS

13

Example for Binary Search

Let us illustrate binary search on the following 9 elements:

Index 1 2 3 4 5 6 7 8 9

Elements -15 -6 0 7 9 23 54 82 101

The number of comparisons required for searching different elements is as follows:

1. Searching for x = 101

Number of comparisons =
4

2. Searching for x = 82

Number of comparisons =
3

3. Searching for x = 42

Number of comparisons = 4

4. Searching for x = -14

Number of comparisons = 3

low

1

high

9

mid

5
6 9 7
8 9 8
9 9 9

 DESIGN AND ANALYSIS OF ALGORITHMS

14

found

low
1

high
9

mi
d 5

6 9 7

8 9 8
found

low

1
high

9
mi

d

5

6 9 7
6 6 6

7 6 not found

low

1
high
9

mi
d 5

1 4 2
1 1 1

2 1 not found

Continuing in this manner the number of element comparisons needed to find each ofnine elements is:

Index 1 2 3 4 5 6 7 8 9
Elements -15 -6 0 7 9 23 54 82 101

Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the comparisons needed to find
all nine items and dividing by 9, yielding 25/9 orapproximately 2.77 comparisons per successful search
on the average.

There are ten possible ways that an un-successful search may terminate depending upon the value of x.

 DESIGN AND ANALYSIS OF ALGORITHMS

15

If x < a[1], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or
a[7] < x < a[8] the algorithm requires 3 element comparisons to determine that ‘x’is not present. For all
of the remaining possibilities BINSRCH requires 4 element comparisons. Thus the average number of
element comparisons for an unsuccessful search is:

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

The time complexity for a successful search is O(log n) and for an unsuccessfulsearch is Θ(log n).

Successful
searches

 un-successful searches

Θ(1), Θ(log n), Θ(log n) Θ(log n)
Best average worst best, average and worst

Analysis for worst case

Let T (n) be the time complexity of Binary

searchThe algorithm sets mid to [n+1 / 2]

Therefore,

T(0) = 0

T(n) = 1 if x = a [mid]

 = 1 + T([(n + 1) / 2] – 1) if x < a [mid]

 = 1 + T(n – [(n + 1)/2]) if x > a [mid]

Let us restrict ‘n’ to values of the form n = 2K – 1, where ‘k’ is a non-negative integer. The array
always breaks symmetrically into two equal pieces plus middle element.

2K – 1 - 1 2K – 1 - 1

 2K 1

Algebraically this is
n

 2K 1 1 = 2K – 1 for K > 1

 2 2

Giving,

T(0) = 0

T(2k – 1) = 1 if x = a [mid]

 = 1 + T(2K - 1 – 1) if x < a [mid]

 = 1 + T(2k - 1 – 1) if x > a [mid]

In the worst case the test x = a[mid] always fails, sow(0)

= 0 w(2k – 1) = 1 + w(2k - 1 – 1)

This is now solved by repeated substitution:w(2k – 1)

= 1 + w(2k - 1– 1)

1

 DESIGN AND ANALYSIS OF ALGORITHMS

16

= 1 + [1 + w(2k -2 –1)]

= 1 + [1 + [1 + w(2k - 3 –1)]]

=

=

= i + w(2k - i – 1)

For i < k, letting i = k gives w(2k –1) = K + w(0) = kBut as 2K – 1 = n,

so K = log2(n + 1), so

w(n) = log2(n + 1) = O(log n)

for n = 2K–1, concludes this analysis of binary search.

Although it might seem that the restriction of values of ‘n’ of the form 2K–1 weakens the result. In
practice this does not matter very much, w(n) is a monotonic increasing function of ‘n’, and hence the
formula given is a good approximation even when ‘n’ is not of the form 2K–1.

Merge Sort:

Merge sort algorithm is a classic example of divide and conquer. To sort an array, recursively, sort its
left and right halves separately and then merge them. The time complexity of merge mort in the best
case, worst case and average case is O(n log n)and the number of comparisons used is nearly optimal.

This strategy is so simple, and so efficient but the problem here is that there seemsto be no easy
way to merge two adjacent sorted arrays together in place (The result must be build up in a separate
array).

The fundamental operation in this algorithm is merging two sorted lists. Because the lists are sorted,
this can be done in one pass through the input, if the output is put ina third list.

Algorithm

Algorithm MERGESORT (low, high)
// a (low : high) is a global array to be sorted.
{

if (low < high)
{

mid := (low + high)/2 //finds where to split the set
MERGESORT(low, mid); //sort one subset
MERGESORT(mid+1, high); //sort the other subset
MERGE(low, mid, high); // combine the
results

}

}

 DESIGN AND ANALYSIS OF ALGORITHMS

17

Algorithm MERGE (low, mid, high)
// a (low : high) is a global array containing two sorted subsets

// in a (low : mid) and in a (mid + 1 : high).

// The objective is to merge these sorted sets into single sorted
// set residing in a (low : high). An auxiliary array B is used.

{

h :=low; i := low; j:= mid + 1; while ((h
< mid) and (J < high)) do
{

if (a[h] < a[j]) then
{

}
els
e

{

}

b[i] := a[h]; h := h + 1;

b[i] :=a[j]; j := j + 1;

i := i + 1;
}

if (h > mid) then
for k := j to high do

{

b[i] := a[k]; i := i + 1;
}

else

for k := h to mid do
{

b[i] := a[K]; i := i + l;

}
for k := low to high do

a[k] := b[k];
}

Example

For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustratemerge sort algorithm:

 DESIGN AND ANALYSIS OF ALGORITHMS

18

1, 4, 8

5, 8 1, 4

Tree Calls of MERGESORT(1, 8)

The following figure represents the sequence of recursive calls that are produced by MERGESORT
when it is applied to 8 elements. The values in each node are the valuesof the parameters low and high.

Tree Calls of MERGE()

The tree representation of the calls to procedure MERGE by MERGESORT is asfollows:

Analysis of Merge Sort

We will assume that ‘n’ is a power of 2, so that we always split into even halves, sowe solve for the case
n = 2k.

For n = 1, the time to merge sort is constant, which we will be denote by 1. Otherwise, the time to merge
sort ‘n’ numbers is equal to the time to do two recursive merge sorts of size n/2, plus the time to merge,
which is linear. The equation says this exactly:

T(1) = 1
T(n) = 2 T(n/2) + n

This is a standard recurrence relation, which can be solved several ways. We will solve by substituting
recurrence relation continually on the right–hand side.

We have, T(n) = 2T(n/2) + n

1, 2, 4

3, 3, 4 1, 1, 2

1, 8

3, 4 1, 2

4, 4 3, 3 2, 2 1, 1

7, 8 5, 6

8, 8 7, 7 6, 6 5, 5

5, 6, 8

7, 7, 8 5, 5, 6

 DESIGN AND ANALYSIS OF ALGORITHMS

19

Since we can substitute n/2 into this main equation

2 T(n/2)

We have,

=
=

2 (2 (T(n/4)) + n/2)
4 T(n/4) + n

T(n/2) = 2 T(n/4) + n
T(n) = 4 T(n/4) + 2n

Again, by substituting n/4 into the main equation, we see that

4T (n/4) =

=
4 (2T(n/8)) + n/4
8 T(n/8) + n

So we have,

T(n/4) = 2 T(n/8) + n
T(n) = 8 T(n/8) + 3n

Continuing in this manner, we obtain:

T(n) = 2k T(n/2k) + K. n

As n = 2k, K = log2n, substituting this in the above equation

T (n) 2log2n
 k2k log n . n

T 2

2

= n T(1) + n log n
= n log n + n Representing

this in O notation:

T(n) = O(n log n)

We have assumed that n = 2k. The analysis can be refined to handle cases when ‘n’is not a power of
2. The answer turns out to be almostidentical.

Although merge sort’s running time is O(n log n), it is hardly ever used for main memory sorts. The
main problem is that merging two sorted lists requires linear extra memory and the additional work
spent copying to the temporary array and back, throughout the algorithm, has the effect of slowing
down the sort considerably.The Best and worst case time complexity of Merge sort is O(n logn).

Strassen’s Matrix Multiplication:

The matrix multiplication of algorithm due to Strassens is the most dramatic exampleof divide and
conquer technique (1969).

The usual way to multiply two n x n matrices A and B, yielding result matrix ‘C’ as follows :

for i := 1 to n do

for j :=1 to n do
c[i, j] := 0;
for K: = 1 to n do

c[i, j] := c[i, j] + a[i, k] * b[k, j];

 DESIGN AND ANALYSIS OF ALGORITHMS

20

This algorithm requires n3 scalar multiplication’s (i.e. multiplication ofsinglenumbers) and n3
scalar additions. So we naturally cannot improve upon.

We apply divide and conquer to this problem. For example let us considers
threemultiplication like this:

A 11 A 12 B 11 B 12 C 11 C 12

A

 B B C C

A
 21

22

 21

22

 21

22

Then cij can be found by the usual matrix multiplication algorithm,C11 = A11 . B11

+ A12 . B21

C12 = A11 . B12 + A12 . B22 C21 =

A21 . B11 + A22 . B21 C22 = A21 . B12

+ A22 . B22

This leads to a divide–and–conquer algorithm, which performs nxn matrix multiplication by
partitioning the matrices into quarters and performing eight (n/2)x(n/2) matrix multiplications and
four (n/2)x(n/2) matrix additions.

T(1) = 1
T(n) = 8 T(n/2)

Which leads to T (n) = O (n3), where n is the power of 2.

Strassens insight was to find an alternative method for calculating the Cij, requiring seven (n/2) x (n/2)
matrix multiplications and eighteen (n/2) x (n/2) matrix additions and subtractions:

P = (A11 + A22) (B11 + B22) Q =

(A21 + A22) B11

R = A11 (B12 – B22) S = A22

(B21 - B11) T = (A11 +

A12) B22

U = (A21 – A11) (B11 + B12) V = (A12

– A22) (B21 + B22) C11 = P + S – T + V

C12 = R + T C21 =

Q + S

C22 = P + R - Q + U.

This method is used recursively to perform the seven (n/2) x (n/2) matrix multiplications, then the
recurrence equation for the number of scalar multiplications performed is:

 DESIGN AND ANALYSIS OF ALGORITHMS

21

2

2

2

T(1) = 1
T(n) = 7 T(n/2)

Solving this for the case of n = 2k is easy:

T(2k) =

=

7 T(2k–1)

72 T(2k-2)

=

=

- - - - - -

- - - - - -

 = 7i T(2k–i)

Put i = k
= 7k T(1)

= 7k

That is, T(n) = 7log n

= n log 7

= O(n log 7) = O(2n.81)

So, concluding that Strassen’s algorithm is asymptotically more efficient than the standard algorithm.
In practice, the overhead of managing the many small matrices does not pay off until ‘n’ revolves the
hundreds.

Quick Sort

The main reason for the slowness of Algorithms like SIS is that all comparisons and exchanges between

keys in a sequence w1, w2, , wn take place between adjacent pairs. In this way it takes a relatively long
time for a key that is badly out ofplace to work its way into its proper position in the sortedsequence.

Hoare his devised a very efficient way of implementing this idea in the early 1960’s that improves

the O(n2) behavior of SIS algorithm with an expected performance that is O(n log n).

In essence, the quick sort algorithm partitions the original array by rearranging it into two groups.
The first group contains those elements less than some arbitrary chosen value taken from the set, and
the second group contains those elements greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearrangedin this way with
respect to the pivot, the very same partitioning is recursively applied to each of the two subsets. When
all the subsets have been partitioned and rearranged, the original array is sorted.

The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved toward each other in the
following fashion:

• Repeatedly increase the pointer ‘i’ until a[i] >= pivot.

• Repeatedly decrease the pointer ‘j’ until a[j] <= pivot.

 DESIGN AND ANALYSIS OF ALGORITHMS

22

• If j > i, interchange a[j] with a[i]

• Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ pointer crosses ‘j’
pointer, the position for pivot is found and place pivot element in ‘j’ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sortfunction sorts
all elements in an array ‘a’ between positions ‘low’ and ‘high’.

• It terminates when the condition low >= high is satisfied. This condition will be satisfied

only when the array is completelysorted.

• Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it calls the partition
function to find the proper position j of the element x[low] i.e. pivot. Then we will have
two sub-arrays x[low], x[low+1],
. . . x[j-1] and x[j+1], x[j+2], x[high].

• It calls itself recursively to sort the left sub-array x[low], x[low+1],

. . x[j-1] between positions low and j-1 (where j is returned by the partition
function).

• It calls itself recursively to sort the right sub-array x[j+1], x[j+2],
. . . x[high] between positions j+1 and high.

 DESIGN AND ANALYSIS OF ALGORITHMS

23

Example

Select first element as the pivot element. Move ‘i’ pointer from left to right in search of an element larger
than pivot. Move the ‘j’ pointer from right to left in search of an element smaller than pivot. If such
elements are found, the elements are swapped. This process continues till the ‘i’ pointer crosses the ‘j’
pointer. If ‘i’ pointer crosses ‘j’ pointer, the position for pivot is found and interchange pivot and element
at ‘j’ position.

Let us consider the following example with 13 elements to analyze quick sort:

1

2

3

4

5

6

7

8

9

10

11

12

13

Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot i j swap i & j

 04 79

 i j swap i & j

 DESIGN AND ANALYSIS OF ALGORITHMS

24

 02 57

 j i

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)
swap

pivot &
j

pivot j, i swap
pivot& j

(02 08 16 06 04) 24

pivot,j
i swap

pivot& j

02 (08 16 06 04)

 pivot i j swap i & j

 04 16

 j i

 (06 04) 08 (16) swap
pivot& j

 pivot,j
i

 (04) 06 swap
pivot& j

 04
 pivot,

j, i

 16
 pivot,

j, i

(02 04 06 08 16 24) 38

 (56 57 58 79 70 45)

 pivot i j swap i & j

 45 57

 j i

 (45) 56 (58 79 70 57)
swap

pivot& j

 45 swap
pivot& j

 pivot,

j, i

 (58
pivot

79
i

70
57)

j
swap i & j

 57 79

 j i

 (57) 58 (70 79)
swap pivot&

j

 57
 pivot,

j, i

 (70 79)

 pivot,j
i

swap pivot&
j

 70

 79
pivot,j,

i

 (45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

 DESIGN AND ANALYSIS OF ALGORITHMS

25



Analysis of Quick Sort:

Like merge sort, quick sort is recursive, and hence its analysis requires solving a recurrence
formula. We will do the analysis for a quick sort, assuming a random pivot(and no cut off for small
files).

We will take T (0) = T (1) = 1, as in merge sort.

The running time of quick sort is equal to the running time of the two recursive calls plus the linear
time spent in the partition (The pivot selection takes only constant time). This gives the basic quick sort
relation:

T (n) = T (i) + T (n – i – 1) + C n - (1)

Where, i = |S1| is the number of elements in S1.

Worst Case Analysis

The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1, which is insignificant,
the recurrence is:

T (n) = T (n – 1) + C n n > 1 - (2)

Using equation – (1) repeatedly, thus

T (n – 1) = T (n – 2) + C (n – 1)

T (n – 2) = T (n – 3) + C (n – 2)

- - - - - - - -

T (2) = T (1) + C (2)

Adding up all these equations yields

T (n)

n

T (1) i
i 2

= O (n2) - (3)

 DESIGN AND ANALYSIS OF ALGORITHMS

26

Best and Average Case Analysis

The number of comparisons for first call on partition: Assume left_to_right moves over k smaller
element and thus k comparisons. So when right_to_left crosses left_to_right it has made n-k+1
comparisons. So, first call on partition makes n+1 comparisons. The average case complexity of
quicksort is

T(n) = comparisons for first call on quicksort

+
{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) +

----- + T(n-1)]/n

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) +----------------------- + T(n-2) +T(n-1)]

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + --------------------------+ T(n-2)] \

Subtracting both sides:

nT(n) –(n-1)T(n-1) = [n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1)nT(n) = 2n

+ (n- 1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-1)

T(n) = 2 + (n+1)T(n-1)/n

The recurrence relation obtained is:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

Using the method of subsititution:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

T(n-1)/n = 2/n + T(n-2)/(n-1)

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2)

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3)

. .

. .

T(3)/4 = 2/4 + T(2)/3
T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 +

T(0)

Adding both sides:

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ---------------------------------- + T(2)/3 + T(1)/2]

= [T(n-1)/n + T(n-2)/(n-1) + ---------------------------- + T(2)/3 + T(1)/2] + T(0)+

[2/(n+1) + 2/n + 2/(n-1) + -------------------------- +2/4 + 2/3]

Cancelling the common terms:

T(n)/(n+1) = 2[1/2 +1/3 +1/4+ ------------------------------ +1/n+1/(n+1)]

T(n) = (n+1)2[2 k n 1
1/ k

=2(n+1) []

=2(n+1)[log (n+1) – log 2]
=2n log (n+1) + log (n+1)-2n log 2 –log 2

T(n)= O(n log n)

 DESIGN AND ANALYSIS OF ALGORITHMS

DESIGN AND ANALYSIS
OF ALGORITHMS

UNIT - II

1

 DESIGN AND ANALYSIS OF ALGORITHMS

2

DISJOINT SETS

DISJOINT SET OPERATIONS:

Set:
A set is a collection of distinct elements. The Set can be represented, for examples,
asS1={1,2,5,10}.

Disjoint Sets:
The disjoints sets are those do not have any common element.
For example S1= {1,7,8,9} and S2={2,5,10}, then we can say that S1 and S2 are two
disjointsets.

Disjoint Set Operations:
The disjoint set operations are
1. Union
2. Find

Disjoint set Union:
If Si and Sj are two disjoint sets, then their union Si U Sj consists of all the elements x
suchthat x is in Si or Sj.

FIND:
Example:
S1={1,7,8,9} S2={2,5,10}
S1 U S2={1,2,5,7,8,9,10}
Given the element I, find the set containing i.
Example:
S1 = {1,7,8,9} S2 = {2,5,10} S3 = {3,4,6}
Then,
Find(4)= S3 Find(5) = S2 Find(7) = S1

Set Representation:
The set will be represented as the tree structure where all children will store the address
of parent / root node. The root node will store null at the place of parent address. In the
given set of elements any element can be selected as the root node, generally we select
the first node as the root node.

Example:
S1={1,7,8,9} S2={2,5,10} s3={3,4,6}

 DESIGN AND ANALYSIS OF ALGORITHMS

3

Then these sets can be represented as

Disjoint Union:
To perform disjoint set union between two sets Si and Sj can take any one root and make

it sub-tree of the other. Consider the above example sets S1 and S2 then the union of S1

and S2 can be represented as any one of the following.

Find:
To perform find operation, along with the tree structure we need to maintain the name of
each set. So, we require one more data structure to store the set names. The data structure
contains two fields. One is the set name and the other one is the pointer to root.

UNION AND FIND ALGORITHMS:

In presenting Union and Find algorithms, we ignore the set names and identify sets just
by the roots of trees representing them. To represent the sets, we use an array of 1 to n
elements where n is the maximum value among the elements of all sets. The index values
represent the nodes (elements of set) and the entries represent the parent node. For the
root value the entry will be ‘-1’.

 DESIGN AND ANALYSIS OF ALGORITHMS

4

Example:
For the following sets the array representation is as shown below.

ALGORITHM FOR UNION OPERATION:

To perform union the SimpleUnion(i,j) function takes the inputs as the set roots i and j .
Andmake the parent of i as j i.e, make the second root as the parent of first root.

Algorithm SimpleUnion(i,j)
{

P[i]:=j;
}

ALGORITHM FOR FIND OPERATION:

The SimpleFind(i) algorithm takes the element i and finds the root node of i. It starts
at Iuntil it reaches a node with parent value -1.

Algorithms SimpleFind(i)
{

while(P[i]≥0) do i:=P[i]; return i;
}

Analysis of SimpleUnion(i,j) and SimpleFind(i):
Although the SimpleUnion(i,j) and SimpleFind(i) algorithms are easy to state, their

performance characteristics are not very good. For example, consider the sets

Then if we want to perform following sequence of operations Union(1,2) ,
Union(2,3)…….Union(n-1,n) and sequence of Find(1), Find(2)……… Find(n).
The sequence of Union operations results the degenerate tree as below.

 DESIGN AND ANALYSIS OF ALGORITHMS

5

Since, the time taken for a Union is constant, the n-1 sequence of union can be processed
intime O(n). And for the sequence of Find operations it will take time complexity of

We can improve the performance of union and find by avoiding the creation of
degeneratetree by applying weighting rule for Union.

Weighting rule for Union:
If the number of nodes in the tree with root I is less than the number in the tree with the
root j, then make ‘j’ the parent of i; otherwise make ‘i' the parent of j.

To implement weighting rule we need to know how many nodes are there in every tree.
To do this we maintain “count” field in the root of every tree. If ‘i' is the root then count[i]
equals to number of nodes in tree with root i.
Since all nodes other than roots have positive numbers in parent (P) field, we can
maintain count in P field of the root as negative number.

 DESIGN AND ANALYSIS OF ALGORITHMS

6

Algorithm WeightedUnion(i,j)
//Union sets with roots i and j , i≠j using the weighted rule
// P[i]=-count[i] and p[j]=-count[j]
{

temp:= P[i]+P[j];
if (P[i]>P[j]) then

{
// i has fewer nodes
P[i]:=j;P[j]:=temp;

}
else
{

// j has fewer nodes
P[j]:=i;P[i]:=temp;

}
}

Collapsing rule for find:

If j is a node on the path from i to its root and p[i]≠root[i], then set P[j] to root[i].
Considerthe tree created by WeightedUnion() on the sequence of 1≤i≤8.
Union(1,2), Union(3,4), Union(5,6) and Union(7,8)

 DESIGN AND ANALYSIS OF ALGORITHMS

7

Now process the following eight find operations Find(8), Find(8) Find(8)
If SimpleFind() is used each Find(8) requires going up three parent link fields for a total
of 24moves .
When Collapsing find is used the first Find(8) requires going up three links and resetting

three links. Each of remaining seven finds require going up only one link field. Then the

total cost is now only 13 moves.(3 going up + 3 resets + 7 remaining finds).

Algorithm CollapsingFind(i)
// Find the root of the tree containing element i
// use the collapsing rule to collapse all nodes from i to root.
{

r:=i;
while(P[r]>0) do r:=P[r]; //Find root while(i≠r)
{

//reset the parent node from element i to the root
s:=P[i];P[i]:=r;
i:=s;

}
}

 DESIGN AND ANALYSIS OF ALGORITHMS

8

BACKTRACKING

BACKTRACKING
The general method—8 queens problem—Sum of subsets—Graph coloring

BACKTRACKING

• It is one of the most general algorithm design techniques.

• Many problems which deal with searching for a set of solutions or for a optimal
solution satisfying some constraints can be solved using the backtracking
formulation.

• To apply backtracking method, tne desired solution must be expressible as an n-

tuple (x1…xn) where xi is chosen from some finite set Si.

• The problem is to find a vector, which maximizes or minimizes a criterion
function
P(x1….xn).

• The major advantage of this method is, once we know that a partial vector
(x1,…xi)
will not lead to an optimal solution that (mi+1 mn) possible test vectors may
be
ignored entirely.

• Many problems solved using backtracking require that all the solutions satisfy a
complex set of constraints.

• These constraints are classified as:

i) Explicit constraints.
ii) Implicit constraints.

1) Explicit constraints:

Explicit constraints are rules that restrict each Xi to take values only from a
given set.Some examples are,
Xi>=0 or Si = {all non-negative real
nos.}Xi =0 or 1 or Si={0,1}.
Li <= Xi<=Ui or Si= {a: Li<= a<=Ui}

• All tupules that satisfy the explicit constraint define a possible solution space for I.

2) Implicit constraints:
The implicit constraint determines which of the tuples in the solution space I can
actuallysatisfy the criterion functions.

 DESIGN AND ANALYSIS OF ALGORITHMS

9

Algorithm:

Algorithm IBacktracking (n)
// This schema describes the backtracking procedure .All solutions are generated in
X[1:n]
//and printed as soon as they are determined.
{
k=1
;
While (k 0) do
{

if (there remains all untried
X[k] belongs to T (X[1],[2],…..X[k-1]) and Bk (X[1],…..X[k])) is true) then

{
if(X[1],……X[k])is the path to the answer node)
Then write(X[1:k]);
k=k+1; //consider the next step.

}
else k=k-1; //consider backtracking to the previous set.

}
}

• All solutions are generated in X[1:n] and printed as soon as they are determined.

• T(X[1]…..X[k-1]) is all possible values of X[k] gives that X[1],… X[k-1] have
already
been chosen.

• Bk(X[1]………X[k]) is a boundary function which determines the elements of
X[k]
which satisfies the implicit constraint.

• Certain problems which are solved using backtracking method are,

1. N-Queens problem.
2. Sum of Subsets
3. Graph coloring

N-QUEENS PROBLEM:
This 8 queens problem is to place n-queens in an ‘N*N’ matrix in such a way that no
two
queens attack each otherwise no two queens should be in the same row, column,
diagonal.

Solution:

• The solution vector X (X1…Xn) represents a solution in which Xi is the column
of theth row where I th queen is placed.

• First, we have to check no two queens are in same row.

 DESIGN AND ANALYSIS OF ALGORITHMS

10

• Second, we have to check no two queens are in same column.

• The function, which is used to check these two conditions, is [I, X (j)], which gives
position of the I th queen, where I represents the row and X (j) represents the
column position.

• Third, we have to check no two queens are in it diagonal.

• Consider two dimensional array A[1:n,1:n] in which we observe that every
element on the same diagonal that runs from upper left to lower right has the same
value.

• Also, every element on the same diagonal that runs from lower right to upper left

has the same value.

• Suppose two queens are in same position (i,j) and (k,l) then two queens lie on the
same diagonal , if and only if |j-l|=|I-k|.

STEPS TO GENERATE THE SOLUTION:

Initialize x array to zero and start by placing the first queen in k=1 in the first row.
To find the column position start from value 1 to n, where ‘n’ is the no. Of

columns
or no. Of queens.

If k=1 then x (k)=1.so (k,x(k)) will give the position of the k th queen. Here we have
tocheck whether there is any queen in the same column or diagonal.

For this considers the previous position, which had already, been found out.
Checkwhether

X (I)=X(k) for column |X(i)-X(k)|=(I-k) for the same diagonal.

If any one of the conditions is true then return false indicating that k th queen

can’t
be placed in position X (k).

For not possible condition increment X (k) value by one and precede d until
theposition is found.

If k=1 then x (k)=1.so (k,x(k)) will give the position of the k th queen. Here we have
tocheck whether there is any queen in the same column or diagonal.

For this considers the previous position, which had already, been found out.
Checkwhether

X (I)=X(k) for column |X(i)-X(k)|=(I-k) for the same diagonal.
If any one of the conditions is true then return false indicating that k th queen

can’t
be placed in position X (k).

For not possible condition increment X (k) value by one and precede d until
theposition is found.

If the position X (k) n and k=n then the solution is generated completely.
If k<n, then increment the ‘k’ value and find position of the next queen.

If the position X (k)>n then k th queen cannot be placed as the size of the matrix
is

‘N*N’.
So decrement the ‘k’ value by one i.e. we have to back track and after the position of

 DESIGN AND ANALYSIS OF ALGORITHMS

11

the previous queen.

Algorithm:

Algorithm place (k,I)
//return true if a queen can be placed in k th row and I th column. otherwise it returns
false.
//X[] is a global array whose first k-1 values have been set. Abs ® returns the absolute
value
//of r.
{

For j=1 to k-1 do
If ((X [j]=I) //two in same
column.Or (abs (X [j]-I)=Abs (j-
k)))

Then return
false;
Return true;

}

Algorithm Nqueen (k,n)
//using backtracking it prints all possible positions of n queens in ‘n*n’ chessboard. So
//that they are non-tracking.
{

For I=1 to n do
{

If place (k,I) then
{

X [k]=I;
If (k=n) then write (X
[1:n]);Else
nquenns(k+1,n) ;

}
}

}

Example: 4 queens.
Two possible solutions are

Solutin-1 Solution 2
(2 4 1 3) (3 1 4 2)

 DESIGN AND ANALYSIS OF ALGORITHMS

12

SUM OF SUBSETS:

• We are given ‘n’ positive numbers called weights and we have to find all
combinations of these numbers whose sum is M. this is called sum of subsets
problem.

• If we consider backtracking procedure using fixed tuple strategy , the elements
X(i) of the solution vector is either 1 or 0 depending on if the weight W(i) is
included or not.

• If the state space tree of the solution, for a node at level I, the left child corresponds
to X(i)=1 and right to X(i)=0.

Example:

• Given n=6,M=30 and W(1…6)=(5,10,12,13,15,18).We have to generate all

possible
combinations of subsets whose sum is equal to the given value M=30.

• In state space tree of the solution the rectangular node lists the values of s, k, r,
where s is the sum of subsets,’k’ is the iteration and ‘r’ is the sum of elements after
‘k’ in the original set.

• The state space tree for the given problem is,

Ist solution is A -> 1 1 0 0 1 0
IInd solution is B -> 1 0 1 1 0 0

 DESIGN AND ANALYSIS OF ALGORITHMS

13

III rd solution is C -> 0 0 1 0 0 1

• In the state space tree, edges from level ‘i’ nodes to ‘i+1’ nodes are labeled with

the
values of Xi, which is either 0 or 1.

• The left sub tree of the root defines all subsets containing Wi.

• The right subtree of the root defines all subsets, which does not include Wi.

Generation of state space tree:

Maintain an array X to represent all elements in the set.

The value of Xi indicates whether the weight Wi is included or not.

Sum is initialized to 0 i.e., s=0.

We have to check starting from the first node.

Assign X(k)<- 1.

If S+X(k)=M then we print the subset because the sum is the required output.

If the above condition is not satisfied then we have to check S+X(k)+W(k+1)<=M. If so, we
have to generate the left sub tree. It means W(t) can be included so the sum will be
incremented and we have to check for the next k.

After generating the left sub tree we have to generate the right sub tree, for this we

have to check S+W(k+1)<=M. Because W(k) is omitted and W(k+1) has to be
selected.

Repeat the process and find all the possible combinations of the subset.

Algorithm:

Algorithm sumofsubset(s,k,r)
{
//generate the left child. note s+w(k)<=M since Bk-1 is
true.X{k]=1;
If (S+W[k]=m) then write(X[1:k]); // there is no recursive call here as
W[j]>0,1<=j<=n.Else if (S+W[k]+W[k+1]<=m) then sum of sub (S+W[k], k+1,r-
W[k]);
//generate right child and evaluate Bk.
If ((S+ r- W[k]>=m)and(S+ W[k+1]<=m)) then
{ X{k]=0;

 DESIGN AND ANALYSIS OF ALGORITHMS

14

sumofsubset (S, k+1, r- W[k]);

} }

GRAPH COLORING:

• Let ‘G’ be a graph and ‘m’ be a given positive integer. If the nodes of ‘G’ can be

colored in such a way that no two adjacent nodes have the same color. Yet only ‘M’
colors are used. So it’s called M-color ability decision problem.

• The graph G can be colored using the smallest integer ‘m’. This integer is referred
to
as chromatic number of the graph.

• A graph is said to be planar iff it can be drawn on plane in such a way that no two
edges cross each other.

• Suppose we are given a map then, we have to convert it into planar. Consider each
and every region as a node. If two regions are adjacent then the corresponding
nodes are joined by an edge.

Consider a map with five regions and its graph.

1 is adjacent to 2, 3, 4.
2 is adjacent to 1, 3, 4, 5
3 is adjacent to 1, 2, 4
4 is adjacent to 1, 2, 3, 5
5 is adjacent to 2, 4

Steps to color the Graph:

• First create the adjacency matrix graph(1:m,1:n) for a graph, if there is an edge
between i,j then C(i,j) = 1 otherwise C(i,j) =0.

 DESIGN AND ANALYSIS OF ALGORITHMS

15

• The Colors will be represented by the integers 1,2,…..m and the solutions will be
stored in the array X(1),X(2),… ,X(n) ,X(index) is the color, index is the node.

• Here formula is used to set the color

is,X(k) = (X(k)+1) % (m+1)
• First one chromatic number is assigned ,after assigning a number for ‘k’ node, we

have to check whether the adjacent nodes has got the same values if so then we
have to assign the next value.

• First one chromatic number is assigned ,after assigning a number for ‘k’ node, we

have to check whether the adjacent nodes has got the same values if so then
wehave to assign the next value.

• Repeat until all the possible combinations colors are found

• The function which is used to check the adjacent nodes and same color

is,If((Graph (k,j) == 1) and X(k) = X(j))

N= 4
M= 3

Adjacency Matrix:

• The problem is to color the given graph of 4 nodes using 3 colors.

• Node-1 can take the given graph of 4 nodes using 3 colors.

• The state space tree will give all possible colors in that ,the numbers which are
insidethe circles are nodes ,and the branch with a number is the colors of the
nodes.

1 2

4 3

 DESIGN AND ANALYSIS OF ALGORITHMS

16

Algorithm:

Algorithm mColoring(k)
// the graph is represented by its Boolean adjacency matrix G[1:n,1:n] .All assignments
//of
1,2, ,m to the vertices of the graph such that adjacent vertices are assigned
//distinctintegers are printed. ’k’ is the index of the next vertex to color.
{
repeat
{

// generate all legal assignment for X[k].
Nextvalue(k); // Assign to X[k] a legal color.

If (X[k]=0) then return; // No new color possible.
If (k=n) then // Almost ‘m’ colors have been used to color the ‘n’ vertices

Write(x[1:n]);
Else
mcoloring(k+1);

}until(false);
}
Algorithm Nextvalue(k)
// X[1],……X[k-1] have been assigned integer values in the range[1,m] such that
//adjacent values have distinct integers. A value for X[k] is determined in the
//range[0,m].X[k] is assigned the next highest numbers color while maintaining
//distinctness form the adjacent vertices of vertex K. If no such color exists, then X[k] is
0.
{

repeat
{

X[k] = (X[k]+1)mod(m+1); // next highest color.

 DESIGN AND ANALYSIS OF ALGORITHMS

17

If(X[k]=0) then return; //All colors have been
used.

For j=1 to n do

{
// Check if this color is distinct from adjacent color.

If((G[k,j] 0)and(X[k] = X[j]))
// If (k,j) is an edge and if adjacent vertices have the same

color.Then break;
}

if(j=n+1) then return; //new color found.
} until(false); //otherwise try to find another color.

}

The time spent by Nextvalue to determine the children is
(mn)Total time is = (mn n).

UNIT-III
DYNAMIC PROGRAMMING

2

INTRODUCTION
Dynamic programming is a name, coined by Richard Bellman in 1955.

Dynamic programming, as greedy method, is a powerful algorithm design
technique that can be used when the solution to the problem may be viewed
as the result of a sequence of decisions. In the greedy method we make
irrevocable decisions one at a time, using a greedy criterion. However, in
dynamic programming we examine the decision sequence to see whether an
optimal decision sequence contains optimal decision subsequence.
When optimal decision sequences contain optimal decision subsequences,
we can establish recurrence equations, called dynamic-programming
recurrence equations, that enable us to solve the problem in an efficient way.
Dynamic programming is based on the principle of optimality (also coined
by Bellman). The principle of optimality states that no matter whatever the
initial state and initial decision are, the remaining decision sequence must
constitute an optimal decision sequence with regard to the state resulting
from the first decision. The principle implies that an optimal decision
sequence is comprised of optimal decision subsequences. Since the principle
of optimality may not hold for some formulations of some problems, it is
necessary to verify that it does hold for the problem being solved. Dynamic
programming cannot be applied when this principle does not hold.
The steps in a dynamic programming solution are:
➢ Verify that the principle of optimality holds

➢ Set up the dynamic-programming recurrence equations

➢ Solve the dynamic-programming recurrence equations for the value

of the optimal solution.

➢ Perform a trace back step in which the solution itself is constructed.

Dynamic programming differs from the greedy method since the greedy
method produces only one feasible solution, which may or may not be
optimal, while dynamic programming produces all possible sub-problems at
most once, one of which guaranteed to be optimal. Optimal solutions to sub-
problems are retained in a table, thereby avoiding the work of recomputing
the answer every time a sub-problem is encountered
The divide and conquer principle solve a large problem, by breaking it up

into smaller problems which can be solved independently. In dynamic

programming this principle is carried to an extreme: when we don't know

exactly which smaller problems to solve, we simply solve them all, then store

the answers away in a table to be used later in solving larger problems. Care

3

is to be taken to

4

avoid recomputing previously computed values, otherwise the recursive

program will have prohibitive complexity. In some cases, the solution can be

improved and in other cases, the dynamic programming technique is the best

approach.

Two difficulties may arise in any application of dynamic programming:
1. It may not always be possible to combine the solutions of smaller
problems to form the solution of a larger one.

2. The number of small problems to solve may be un-acceptably large.

There is no characterized precisely which problems can be effectively solved

with dynamic programming; there are many hard problems for which it does

not seen to be applicable, as well as many easy problems for which it is less

efficient than standard algorithms.

Applications of dynamic programming:

1. Optimal binary search trees
2. 0/1 knapsack problem
3. All pairs shortest path problem
4. Traveling sales person problem
5. Reliability design

OPTIMAL BINARY SEARCH TREES

Let us assume that the given set of identifiers is {a1, . . . , an} with a1 < a2 < . . .
. < an. Let p (i) be the probability with which we search for ai. Let q (i) be the
probability that the identifier x being searched for is such that ai < x < ai+1,
0 < i < n (assume a0 = - ∞and an+1 = +∞). We have to arrange the identifiers
in a binary search tree in a way that minimizes the expected total access time.
In a binary search tree, the number of comparisons needed to access an
element at depth 'd' is d + 1, so if 'ai' is placed at depth 'di', then we want to
minimize:

Let P (i) be the probability with which we shall be searching for 'ai'. Let Q (i)
be the probability of an un-successful search. Every internal node represents
a point where a successful search may terminate. Every external node
represents a point where an unsuccessful search may terminate.
The expected cost contribution for the internal node for 'ai' is:

5

Unsuccessful search terminate with I = 0 (i.e at an external node). Hence the
cost contribution for this node is:

The expected cost of binary search tree is:

Given a fixed set of identifiers, we wish to create a binary search tree
organization. We may expect different binary search trees for the same
identifier set to have different performance characteristics.
The computation of each of these c(i, j)’s requires us to find the minimum of
m quantities. Hence, each such c(i, j) can be computed in time O(m). The
total time for all c(i, j)’s with j – i = m is therefore O(nm – m2).
The total time to evaluate all the c(i, j)’s and r(i, j)’s is
therefore: Σnm(nm-m2) = O(n3)

Example 1: The possible binary search trees for the identifier set (a1, a2, a3)
= (do, if, stop) are as follows. Given the equal probabilities p (i) = Q (i) = 1/7
for all i, we have:

Tree 1

stop

if

do

6

Huffman coding tree solved by a greedy algorithm has a limitation of having
the data only at the leaves and it must not preserve the property that all
nodes to the left of the root have keys, which are less etc. Construction of an
optimal binary search tree is harder, because the data is not constrained to
appear only at the leaves, and also because the tree must satisfy the binary
search tree property and it must preserve the property that all nodes to the
left of the root have keys, which are less.

7

A dynamic programming solution to the problem of obtaining an optimal

binary search tree can be viewed by constructing a tree as a result of

sequence of decisions by holding the principle of optimality. A possible

approach to this is to make a decision as which of the ai's be arraigned to the

root node at 'T'. If we choose 'ak' then is clear that the internal nodes for a1,

a2, ak-1 as well as the external nodes for the classes Eo, E1, Ek-1

will lie in the left sub tree, L, of the root. The remaining nodes will be in the

right subtree, R. The structure of an optimal binary search tree is:

C (i, J) is the cost of the optimal binary search tree 'Tij' during computation
we record the root R (i, J) of each tree 'Tij'. Then an optimal binary search
tree may be constructed from these R (i, J). R (i, J) is the value of 'K' that
minimizes equation (1).
We solve the problem by knowing W (i, i+1), C (i, i+1) and R (i, i+1), 0 ≤ i < 4;
Knowing W (i, i+2), C (i, i+2) and R (i, i+2), 0 ≤ i < 3 and repeating until W (0,
n), C (0, n) and R (0, n) are obtained.
The results are tabulated to recover the actual tree.

8

Example 1:
Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1)
and Q (0: 4) = (2, 3, 1, 1, 1)
Solution:
Table for recording W (i, j), C (i, j) and R (i, j):

This computation is carried out row-wise from row 0 to row 4. Initially, W (i,
i)
= Q
(i) and C (i, i) = 0 and R (i, i) = 0, 0 < i < 4.
Solving for C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1,

2 and 3; i < k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for

k = 1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 = 8
C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 8
R (0, 1) = 1 (value of 'K' that is minimum in the above equation). Next with i
= 1; so j = 2; as i < k ≤ j, so the possible value for k = 2
W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 = 7
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 7
R (1, 2) = 2
Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3
R (2, 3) = 3
Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4 W (3, 4) =
P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3
R (3, 4) = 4

9

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0,
1, 2; i < k ≤ J. Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k
= 1 and 2.
W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 = 12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))}
= 12 + min {(0 + 7, 8 + 0)} = 19
R (0, 2) = 1
Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.
W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 = 9
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}
= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 = 12
R (1, 3) = 2
Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.
W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5
C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]
= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8
R (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0,
1;
i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2
and 3.
W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)],
[C (0, 2) + C (3, 3)]}
= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 = 25
R (0, 3) = 2
Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.
W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 = 11
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)],
[C (1, 3) + C (4, 4)]}
= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 = 19
R (1, 4) = 2

Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 < i < 1; i =
0; i < k ≤ J.
Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and 4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],
[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}
= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 = 32
R (0, 4) = 2

10

From the table we see that C (0, 4) = 32 is the minimum cost of a binary
search tree for (a1, a2, a3, a4). The root of the tree 'T04' is 'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is
'a1' and the root of 'T24' is a3.
The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root
of T01 is 'a1'
The left and right sub trees for T24 are T22 and T34 respectively. The root of
T24 is 'a3'.
The root of T22 is

null The root of T34 is

a4.

Example 2:
Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3
= Q4 = 1/16 and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal
binary search tree. Solving for C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1,
2 and 3; i < k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for
k = 1
W (0, 1) = P (1) + Q (1) + W (0, 0) = 4 + 3 + 2 = 9
C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 9 + [(0 + 0)] = 9
R (0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2
W (1, 2) = P (2) + Q (2) + W (1, 1) = 2 + 1 + 3 = 6
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 6 + [(0 + 0)] = 6
R (1, 2) = 2
Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3 W (2, 3) =
P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3

R (2, 3) = 3
Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4 W (3, 4) =

11

P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3

12

C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3
R (3, 4) = 4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0,
1, 2; i < k ≤ J
Start with i = 0; so j = 2; as i < k ≤ j, so the possible values for k = 1 and 2.
W (0, 2) = P (2) + Q (2) + W (0, 1) = 2 + 1 + 9 = 12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))}
= 12 + min {(0 + 6, 9 + 0)} = 12 + 6 = 18
R (0, 2) = 1
Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.
W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 6 = 8
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}
= W (1, 3) + min {(0 + 3), (6 + 0)} = 8 + 3 = 11
R (1, 3) = 2
Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.
W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5
C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]
= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8
R (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0,
1;
i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2
and 3.
W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)],
[C (0, 2) + C (3, 3)]}
= 14 + min {(0 + 11), (9 + 3), (18 + 0)} = 14 + 11 = 25
R (0, 3) = 1
Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.
W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 8 = 10
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)],
[C (1, 3) + C (4, 4)]}
= 10 + min {(0 + 8), (6 + 3), (11 + 0)} = 10 + 8 = 18
R (1, 4) = 2

Fourth, Computing all C (i, j) such that J - i = 4; j = i + 4 and as 0 < i < 1; i = 0;
i < k ≤ J. Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1,
2, 3 and 4.
W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],
[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

13

= 16 + min [0 + 18, 9 + 8, 18 + 3, 25 + 0] = 16 + 17 = 33
R (0, 4) = 2
Table for recording W (i, j), C (i, j) and R (i, j)

From the table we see that C (0, 4) = 33 is the minimum cost of a binary
search tree for (a1, a2, a3, a4)
The root of the tree 'T04' is 'a2'.
Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is
'a1' and the root of 'T24' is a3.
The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root
of T01 is 'a1'
The left and right sub trees for T24 are T22 and T34 respectively. The
root of T24 is 'a3'.
The root of T22 is null. The root of T34 is a4.

0/1 KNAPSACK PROBLEM

We are given n objects and a knapsack. Each object i has a positive weight wi
and a positive value Vi. The knapsack can carry a weight not exceeding W.
Fill the knapsack so that the value of objects in the knapsack is optimized.
A solution to the knapsack problem can be obtained by making a sequence
of decisions on the variables x1, x2, , xn. A decision on variable xi involves
determining which of the values 0 or 1 is to be assigned to it. Let us assume
that decisions on the xi are made in the order xn, xn-1,x1. Following a
decision

14

on xn, we may be in one of two possible states: the capacity remaining in m –
wn and a profit of pn has accrued. It is clear that the remaining decisions xn-

1, . . . , x1 must be optimal with respect to the problem state resulting from the
decision on xn. Otherwise, xn,. . . . , x1 will not be optimal. Hence, the principal
of optimality holds.

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y)
= 0 for all y and fi (y) = - ∞, y < 0. Then f1, f2, . . . fn can be successively
computed using equation–2.
When the wi’s are integer, we need to compute fi (y) for integer y, 0 < y < m.
Since fi (y) = - ∞ for y < 0, these function values need not be computed
explicitly. Since each fi can be computed from fi - 1 in Θ (m) time, it takes Θ
(m n) time to compute fn. When the wi’s are real numbers, fi (y) is needed
for real numbers y such that 0 < y < m. So, fi cannot be explicitly computed
for all y in this range. Even when the wi’s are integer, the explicit Θ (m n)
computation of fn may not be the most efficient computation. So, we explore
an alternative method for both cases.

Example 1:
Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2,
P3) = (1, 2, 5) and M = 6.
Solution:
Initially, fo (x) = 0, for all x and fi (x) = - ∞ if x < 0. Fn (M) = max {fn-1 (M),
fn-1 (M - wn) + pn}
F3 (6) = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) + 5}
F2 (6) = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) + 2}

15

1

1

F1 (6) = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} = 1
F1 (3) = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} = 1
Therefore, F2 (6) = max (1, 1 + 2} = 3
F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), - + 2}
F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} = 1
F2 (2) = max {1, - ∞ + 2} = 1
Finally, f3 (6) = max {3, 1 + 5} = 6

Other Solution:
For the given data we have:
S0 = {(0, 0)}; S01 = {(1, 2)}
S1 = (S0 U S01) = {(0, 0), (1, 2)}
X - 2 = 0 => x = 2. y – 3 = 0 => y = 3
X - 2 = 1 => x = 3. y – 3 = 2 => y = 5
S11 = {(2, 3), (3, 5)}
S2 = (S1 U S11) = {(0, 0), (1, 2), (2, 3), (3, 5)}
X – 5 = 0 => x = 5. y – 4 = 0 => y = 4
X – 5 = 1 => x = 6. y – 4 = 2 => y = 6
X – 5 = 2 => x = 7. y – 4 = 3 => y = 7
X – 5 = 3 => x = 8. y – 4 = 5 => y = 9
S1 = {(5, 4), (6, 6), (7, 7), (8, 9)}
S3 = (S2 U S2) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8, 9)}
By applying Dominance rule,
S3 = (S2 U S2) = {(0, 0), (1, 2), (2, 3), (5, 4), (6, 6)}
From (6, 6) we can infer that the maximum Profit Σ pi xi = 6 and weight
Σxiwi = 6

ALL PAIRS SHORTEST PATHS

In the all pairs shortest path problem, we are to find a shortest path between
every pair of vertices in a directed graph G. That is, for every pair of vertices
(i, j), we are to find a shortest path from i to j as well as one from j to i. These
two paths are the same when G is undirected.
When no edge has a negative length, the all-pairs shortest path problem may
be solved by using Dijkstra’s greedy single source algorithm n times, once
with each of the n vertices as the source vertex.
The all pairs shortest path problem is to determine a matrix A such that A
(i, j) is the length of a shortest path from i to j. The matrix A can be obtained
by solving n single-source problems using the algorithm shortest Paths.
Since each application of this procedure requires O (n2) time, the matrix A
can be obtained in O (n3) time.

16

The dynamic programming solution, called Floyd’s algorithm, runs in O (n3)
time. Floyd’s algorithm works even when the graph has negative length
edges (provided there are no negative length cycles).
The shortest i to j path in G, i ≠ j originates at vertex i and goes through some
intermediate vertices (possibly none) and terminates at vertex j. If k is an
intermediate vertex on this shortest path, then the subpaths from i to k and
from k to j must be shortest paths from i to k and k to j, respectively.
Otherwise, the i to j path is not of minimum length. So, the principle of
optimality holds. Let Ak (i, j) represent the length of a shortest path from i to
j going through no vertex of index greater than k, we obtain:

Algorithm:
Algorithm All Paths (Cost, A, n)
// cost [1:n, 1:n] is the cost adjacency matrix of a graph which
// n vertices; A [I, j] is the cost of a shortest path from vertex
// i to vertex j. cost [i, i] = 0.0, for 1 < i < n.
{
for i := 1 to n do

for j:= 1 to n do
A [i, j] := cost [i, j]; // copy cost into

A. for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
A [i, j] := min (A [i, j], A [i, k] + A [k, j]);

}

Complexity Analysis: A Dynamic programming algorithm based on this
recurrence involves in calculating n+1 matrices, each of size n x n. Therefore,
the algorithm has a complexity of O (n3).

Example 1:
Given a weighted digraph G = (V, E) with weight. Determine the length of the
shortest path between all pairs of vertices in G. Here we assume that there
are no cycles with zero or negative cost.

17

Solve the problem for different values of k = 1, 2 and 3
Step 1: Solving the equation for, k = 1;

Step 2: Solving the equation for, K = 2;

18

Step 3: Solving the equation for, k = 3;

TRAVELING SALES PERSON PROBLEM

Let G = (V, E) be a directed graph with edge costs Cij. The variable cij is defined
such that cij > 0 for all I and j and cij = ∞ if < i, j> E. Let |V| = n and assume
n
> 1. A tour of G is a directed simple cycle that includes every vertex in V. The
cost of a tour is the sum of the cost of the edges on the tour. The traveling
sales person problem is to find a tour of minimum cost. The tour is to be a
simple path that starts and ends at vertex 1.
Let g (i, S) be the length of shortest path starting at vertex i, going through all
vertices in S, and terminating at vertex 1. The function g (1, V – {1}) is the
length of an optimal salesperson tour. From the principal of optimality it
follows that

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all

19

choices of k.

Complexity Analysis:

20

This is Φ (n 2n-2), so there are exponential number of calculate. Calculating
one g (i, S) require finding the minimum of at most n quantities. Therefore,
the entire algorithm is Φ (n2 2n-2). This is better than enumerating all n!
different tours to find the best one. So, we have traded on exponential growth
for a much smaller exponential growth. The most serious drawback of this
dynamic programming solution is the space needed, which is O (n 2n). This
is too large even for modest values of n.

Example 1:
For the following graph find minimum cost tour for the traveling
salesperson problem:

Let us start the tour from vertex 1:

21

The optimal tour for the graph has length =
35 The optimal tour is: 1, 2, 4, 3, 1.

22

RELIABILITY DESIGN

The problem is to design a system that is composed of several devices
connected in series. Let ri be the reliability of device Di (that is ri is the
probability that device i will function properly) then the reliability of the
entire system is π ri. Even if the individual devices are very reliable (the ri’s
are very close to one), the reliability of the system may not be very good. For
example, if n = 10 and ri = 0.99, i <= i <= 10, then π ri = .904. Hence, it is
desirable to duplicate devices. Multiply copies of the same device type are
connected in parallel.

If stage i contains mi copies of device Di. Then the probability that all mi have
a malfunction is (1 – ri)mi.
Hence the reliability of stage i becomes 1 – (1 - r)mi.

The reliability of stage ‘i’ is given by a function i (mi).
Our problem is to use device duplication. This maximization is to be carried
out
under a cost constraint. Let ci be the cost of each unit of device i and let c be
the maximum allowable cost of the system being designed.

23

24

25

By applying Dominance rule to S2:
Therefore, S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

26

Dominance Rule:

27

28

UNIT-IV
Greedy method: General method, applications-Job sequencing with deadlines,
knapsack problem, Minimum cost spanning trees, Single source shortest path
problem.

General method:

The greedy method is one of the strategies like Divide and conquer used to solve
the problems. This method is used for solving optimization problems. An
optimization problem is a problem that demands either maximum or minimum
results. Let's understand through some terms.

The Greedy method is the simplest and straightforward approach. It is not an
algorithm, but it is a technique. The main function of this approach is that the
decision is taken on the basis of the currently available information. Whatever
the current information is present, the decision is made without worrying
about the effect of the current decision in future.

This technique is basically used to determine the feasible solution that may or
may not be optimal. The feasible solution is a subset that satisfies the given
criteria. The optimal solution is the solution which is the best and the most
favorable solution in the subset. In the case of feasible, if more than one solution
satisfies the given criteria then those solutions will be considered as the
feasible, whereas the optimal solution is the best solution among all the
solutions.

Advantages

• It is easy to implement.

• Has fewer time complexities.

• Can be used for the purpose of optimization or finding close to

optimization in the case of NP-Hard problems.

Disadvantages of using Greedy algorithm

Greedy algorithm makes decisions based on the information available at each
phase without considering the broader problem. So, there might be a possibility
that the greedy solution does not give the best solution for every problem.

It follows the local optimum choice at each stage with a intend of finding the
global optimum. Let's understand through an example.

Consider the graph which is given below:

We have to travel from the source to the destination at the minimum cost. Since
we have three feasible solutions having cost paths as 10, 20, and 5. 5 is the
minimum cost path so it is the optimal solution. This is the local optimum, and
in this way, we find the local optimum at each stage in order to calculate the
global optimal solution.

Characteristics of Greedy approach

1. The greedy approach consists of an ordered list of resources (profit, cost,

value, etc.)

2. The greedy approach takes the maximum of all the resources (max profit,

max value, etc.)

3. For example, in the case of the fractional knapsack problem, the

maximum value/weight is taken first based on the available capacity.

Applications of Greedy Algorithm

o It is used in finding the shortest path.

o It is used to find the minimum spanning tree using the prim's algorithm

or the Kruskal's algorithm.

o It is used in a job sequencing with a deadline.

o This algorithm is also used to solve the fractional knapsack problem.

Job Sequencing With Deadlines

Here is the process of Job sequencing in brief.

• Firstly, you are given a set of jobs.

• Each job has a set of defined deadlines and some profit associated with it.

• A job is profited only if that job is completed within the given deadline.

• Another point to note is that only one processor will be available for

processing all the jobs.

• The processor will take one unit of time in order to complete a job.

The problem states-
Approach to Solution

• A feasible solution is a subset of jobs such that each job of the subset is

completed within the given deadline.

• The value of a feasible solution is said to be the sum of the profit of all the

jobs contained in that subset.

• An optimal solution to the problem would be a feasible solution that gives

the maximum profit.

Greedy Algorithm Approach-
We adopt the greedy algorithm inorder to determine the selection of the
next job to get an optimal solution.
Below is the greedy algorithm that is always supposed to give an optimal
solution to the job sequencing problem.

Step-01:

• Sorting of all the given jobs in the decreasing order of their profit.

Step-02:

• Checking the value of the maximum deadline.

• Drawing a Gantt chart such that the maximum time on the Gantt chart is

the value of the maximum deadline.

Step-03:

• Picking up the jobs one after the other.

• Adding the jobs on the Gantt chart in such a way that they are as far as

possible from 0. This ensures that the job gets completed before the given

deadline.

Algorithm for Job Sequencing with Deadline:
Algorithm: Job-Sequencing-With-Deadline (Dead, Job, n, k)

PROBLEM BASED ON JOB SEQUENCING WITH DEADLINES-

Problem-
We are given the jobs, their deadlines and associated profits as shown-

Jobs J1 J2 J3 J4 J5 J6

Deadlines 5 3 3 2 4 2

Profits 201 181 191 301 121 101

Answer the following questions-

1. Write the optimal schedule that provides us the maximum profit.

2. Can we complete all the jobs in the optimal schedule?

3. What is the maximum earned profit?

Dead(0) := Job(0) := 0
k := 1
Job(1) := 1 // means first job is selected
for i = 2 … n do

r := k
while Dead(Job(r)) > Dead(i) and Dead(Job(r)) ≠ r do

r := r – 1
if Dead(Job(r)) ≤ Dead(i) and Dead(i) > r then

for l = k … r + 1 by -1 do
Job(l + 1) := Job(l)
Job(r + 1) := i
k := k + 1

Solution:
Step-01:
Firstly, we need to sort all the given jobs in decreasing order of their profit
as follows.

Jobs J4 J1 J3 J2 J5 J6

Deadlines 2 5 3 3 4 2

Profits 300 200 190 180 120 100

Step-02:
For each step, we calculate the value of the maximum deadline.
Here, the value of the maximum deadline is 5.
So, we draw a Gantt chart as follows and assign it with a maximum time on
the Gantt chart with 5 units as shown below.

Now,

• We will be considering each job one by one in the same order as they

appear in the Step-01.

• We are then supposed to place the jobs on the Gantt chart as far as

possible from 0.
Step-03:

• We now consider job4.

• Since the deadline for job4 is 2, we will be placing it in the first empty cell

before deadline 2 as follows.

Step-04:

• Now, we go with job1.

• Since the deadline for job1 is 5, we will be placing it in the first empty cell

before deadline 5 as shown below.

Step-05:

• We now consider job3.

• Since the deadline for job3 is 3, we will be placing it in the first empty cell

before deadline 3 as shown in the following figure.

Step-06:

• Next, we go with job2.

• Since the deadline for job2 is 3, we will be placing it in the first empty cell

before deadline 3.

• Since the second cell and third cell are already filled, so we place job2 in

the first cell as shown below.

Step-07:

• Now, we consider job5.

• Since the deadline for job5 is 4, we will be placing it in the first empty cell

before deadline 4 as shown in the following figure.

Now,

• We can observe that the only job left is job6 whose deadline is 2.

• Since all the slots before deadline 2 are already occupied, job6 cannot be

completed.
Now, the questions given above can be answered as follows:

Part-01:
The optimal schedule is-
Job2, Job4, Job3, Job5, Job1
In order to obtain the maximum profit this is the required order in which
the jobs must be completed.
Part-02:

• As we can observe, all jobs are not completed on the optimal schedule.

• This is because job6 was not completed within the given deadline.
Part-03:
Maximum earned profit = Sum of the profit of all the jobs from the
optimal schedule
= Profit of job2 + Profit of job4 + Profit of job3 + Profit of job5 + Profit of
job1
= 181 + 301 + 191 + 121 + 201
= 995 units

Analysis of the algorithm:
In the job sequencing with deadlines algorithm, we make use of two loops, one
loop within another. Hence, the complexity of this algorithm would be
O(n2).

Knapsack Problem
When given a set of items, where each item has a weight and a value, we need
to determine a subset of items that are to be included in a collection in such
a way that the total weight aggregates up to be lower than or equal to a given
limit and the total value could be as big as possible.

The Knapsack problem is an instance of a Combinatorial Optimization problem.
One general approach to crack difficult problems is to identify the most
restrictive constraint. For this, we must ignore the others and solve a
knapsack problem, and finally, we must somehow fit the solution to satisfy
the constraints that are ignored.

Applications
For multiple cases of resource allocation problems that have some specific
constraints, the problem can be solved in a way that is similar to the Knapsack
problem. Following are a set of examples.

• Finding the least wasteful way to cut down the basic materials

• portfolio optimization

• Cutting stock problems

Problem Scenario
Consider a problem scenario where a thief is robbing a store and his knapsack
(bag) can carry a maximal weight of W. Consider that there are n items in
the store and the weight of the ith item is wi and its respective profit is pi.

What are all the items the thief should take?
Here, the main goal/objective of the thief is to maximize the profit anyhow. So,
the items should opt-in such a way that the items which are carried by the
thief will fetch the maximum profit.

Based on the nature of the items, Knapsack problems are classified into
two categories

• Fractional Knapsack

• Knapsack

Fractional Knapsack
In this category, items can be broken into smaller pieces, and the thief can
select fractions of items.

According to the problem scenario,

• There are n items in the store

• Weight of ith item

• wi>0

• Profit for ith item

• pi>0 and

• The capacity of the Knapsack is W

As the name suggests, in the Knapsack problem, items can be broken into
smaller fragments. So, the thief might only take a fraction or a part of xi of
ith item.
0⩽xi⩽1
The ith item in the store contributes a weight of xi.wi to the total weight
in the knapsack(bag) and profit xi.pi to the Total Profit.

Hence, the main objective of the algorithm is basically to maximize the value
of ∑n=1n(xi.pi) with respect to the given constraint,
∑n=1n(xi. wi)⩽W
We already know that a solution that is said to be an optimal solution must fill
the knapsack(bag) exactly, if not, we could at least add a smaller fraction of
one of the remaining items. This will result in an increase in the overall profit.

Thus, an optimal solution to this problem can be obtained by,
∑n=1n(xi.wi)=W
Now, we have to sort all those items based on their values of piwi, so that
pi+1wi+1 ≤ piwi
Here, x is an array that is used to store the fraction of items.

Analysis
Suppose that we are provided with items that have already been sorted in the
decreasing order of piwi, then the time taken by the “while” will be
O(n). So, the total time including that includes even sorting will be O(n logn).

Example
Let us consider that the capacity of the knapsack(bag) W = 60 and the list
of items are shown in the following table −

Item A B C D

Profit 281 101 121 121

Weight 40 10 20 24

Ratio (piwi) 7 10 6 5

We can see that the provided items are not sorted based on the value of
piwi, we perform sorting. After sorting, the items are shown in the following
table.

Item B A C D

Profit 101 281 121 121

Weight 10 40 20 24

Ratio (piwi) 10 7 6 5

Solution
Once we sort all the items according to the piwi, we choose all of B as the weight
of B is less compared to that of the capacity of the knapsack. Further, we
choose item A, as the available capacity of the knapsack is greater than the
weight of A. Now, we will choose C as the next item. Anyhow, the whole item
cannot be chosen as the remaining capacity of the knapsack is less than the
weight of the chosen item – C.

Hence, a fraction of C (i.e. (60 − 50)/20) is chosen.

Minimum cost spanning trees:

A spanning tree is a subset of an undirected Graph that has all the vertices
connected by minimum number of edges.

If all the vertices are connected in a graph, then there exists at least one
spanning tree. In a graph, there may exist more than one spanning tree.

Properties

 A spanning tree does not have any cycle.

 Any vertex can be reached from any other vertex.
Example

In the following graph, the highlighted edges form a spanning tree.

Minimum Spanning Tree

A Minimum Spanning Tree (MST) is a subset of edges of a connected
weighted undirected graph that connects all the vertices together with the
minimum possible total edge weight. To derive an MST, Prim’s algorithm or
Kruskal’s algorithm can be used. Hence, we will discuss Prim’s algorithm in this
chapter.

As we have discussed, one graph may have more than one spanning tree. If
there are n number of vertices, the spanning tree should have n - 1 number of
edges. In this context, if each edge of the graph is associated with a weight and
there exists more than one spanning tree, we need to find the minimum
spanning tree of the graph.

Moreover, if there exist any duplicate weighted edges, the graph may have
multiple minimum spanning tree.

In the above graph, we have shown a spanning tree though it’s not the minimum
spanning tree. The cost of this spanning tree is (5 + 7 + 3 + 3 + 5 + 8 + 3 + 4) =
38.

We will use Prim’s algorithm to find the minimum spanning tree.

Prim’s Algorithm

Prim’s algorithm is a greedy approach to find the minimum spanning tree. In
this algorithm, to form a MST we can start from an arbitrary vertex.

The function Extract-Min returns the vertex with minimum edge cost. This
function works on min-heap.

Example

Using Prim’s algorithm, we can start from any vertex, let us start from vertex 1.

Vertex 3 is connected to vertex 1 with minimum edge cost, hence edge (1, 2) is
added to the spanning tree.

Algorithm: MST-Prim’s (G, w, r)
for each u є G.V
u.key = ∞
u.∏ = NIL
r.key = 0
Q = G.V
while Q ≠ Ф
u = Extract-Min (Q)
for each v є G.adj[u]
if each v є Q and w(u, v) < v.key
v.∏ = u
v.key = w(u, v)

Next, edge (2, 3) is considered as this is the minimum among edges {(1, 2), (2,
3), (3, 4), (3, 7)}.

In the next step, we get edge (3, 4) and (2, 4) with minimum cost. Edge (3, 4) is
selected at random.

In a similar way, edges (4, 5), (5, 7), (7, 8), (6, 8) and (6, 9) are selected. As all
the vertices are visited, now the algorithm stops.

The cost of the spanning tree is (2 + 2 + 3 + 2 + 5 + 2 + 3 + 4) = 23. There is no
more spanning tree in this graph with cost less than 23.

Some of the properties of the spanning tree are listed below:
 A connected graph can have more than one spanning trees.
 All spanning trees in a graph have the same number of nodes and

edges.
 If we remove one edge from the spanning tree, then it will become

minimally connected and will make the graph disconnected.
 On the other hand, adding one edge to the spanning tree will make

it maximally acyclic thereby creating a loop.
 A spanning tree does not have a loop or a cycle.

What Is A Minimum Spanning Tree (MST)
A minimum spanning tree is the one that contains the least weight among all
the other spanning trees of a connected weighted graph. There can be more
than one minimum spanning tree for a graph.

There are two most popular algorithms that are used to find the minimum
spanning tree in a graph.
They include:

 Kruskal’s algorithm

 Prim’s algorithm

Kruskal’s Algorithm

Kruskal’s algorithm is an algorithm to find the MST in a connected graph.

Kruskal’s algorithm finds a subset of a graph G such that:

 It forms a tree with every vertex in it.
 The sum of the weights is the minimum among all the spanning

trees that can be formed from this graph.
The sequence of steps for Kruskal’s algorithm is given as follows:

1. First sort all the edges from the lowest weight to highest.
2. Take edge with the lowest weight and add it to the spanning tree.

If the cycle is created, discard the edge.
3. Keep adding edges like in step 1 until all the vertices are

considered.
Pseudocode for Kruskal’s Algorithm
Given below is the pseudo-code for Kruskal’s Algorithm

Now let us see the illustration of Kruskal’s algorithm.

Now we choose the edge with the least weight which is 2-4.

Next, choose the next shortest edge 2-3.

Then we choose next edge with the shortest edge and that does not create a
cycle i.e. 0-3

The next step is to choose the shortest edge so that it doesn’t form a cycle. This
is 0-1.

Prim’s Algorithm

Prim’s algorithm is yet another algorithm to find the minimum spanning the
tree of a graph. In contrast to Kruskal’s algorithm that starts with graph edges,
Prim’s algorithm starts with a vertex. We start with one vertex and keep on
adding edges with the least weight till all the vertices are covered.

The sequence of steps for Prim’s Algorithm is as follows:

1. Choose a random vertex as starting vertex and initialize a
minimum spanning tree.

2. Find the edges that connect to other vertices. Find the edge with
minimum weight and add it to the spanning tree.

3. Repeat step 2 until the spanning tree is obtained.
Pseudocode for Prim’s Algorithm

Now let us see an illustration for Prim’s algorithm.
For this, we are using the same example graph that we used in the Illustration
of Kruskal’s algorithm.

Let us select node 2 as the random vertex.

Next, we select the edge with the least weight from 2. We choose edge 2-4.

Next, we choose another vertex that is not in the spanning tree yet. We choose
the edge 2-3.

Now let us select an edge with least weight from the above vertices. We have
edge 3-0 which has the least weight.

Next, we choose an edge with the least weight from vertex 0. This is the edge
0-1.

From the above figure, we see that we have now covered all the vertices in the
graph and obtained a complete spanning tree with minimum cost.

Single source shortest path problem:
The single source shortest path algorithm (for arbitrary weight positive or

negative) is also known Bellman-Ford algorithm is used to find minimum

distance from source vertex to any other vertex. The main difference between

this algorithm with Dijkstra’s algorithm is, in Dijkstra’s algorithm we cannot

handle the negative weight, but here we can handle it easily.

Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a
directed weighted graph G = (V, E), where all the edges are non-negative (i.e.,
w(u, v) ≥ 0 for each edge (u, v) Є E).

In the following algorithm, we will use one function Extract-Min(), which
extracts the node with the smallest key.

Algorithm: Dijkstra’s-Algorithm (G, w, s)
for each vertex v Є G.V
v.d := ∞
v.∏ := NIL
s.d := 0
S := Ф
Q := G.V
while Q ≠ Ф
u := Extract-Min (Q)
S := S U {u}
for each vertex v Є G.adj[u]

Analysis

The complexity of this algorithm is fully dependent on the implementation of
Extract-Min function. If extract min function is implemented using linear
search, the complexity of this algorithm is O(V2 + E).

In this algorithm, if we use min-heap on which Extract-Min() function works to
return the node from Q with the smallest key, the complexity of this algorithm
can be reduced further.

Example

Let us consider vertex 1 and 9 as the start and destination vertex respectively.
Initially, all the vertices except the start vertex are marked by ∞ and the start
vertex is marked by 0.

Vertex

Initial

Step1
V1

Step2
V3

Step3
V2

Step4
V4

Step5
V5

Step6
V7

Step7
V8

Step8
V6

1 0 0 0 0 0 0 0 0 0

2 ∞ 5 4 4 4 4 4 4 4

3 ∞ 2 2 2 2 2 2 2 2

4 ∞ ∞ ∞ 7 7 7 7 7 7

5 ∞ ∞ ∞ 11 9 9 9 9 9

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16

7 ∞ ∞ 11 11 11 11 11 11 11

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13

if v.d > u.d + w(u, v)
v.d := u.d + w(u, v)
v.∏ := u

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is

1→ 3→ 7→ 8→ 6→ 9

This path is determined based on predecessor information.

Bellman Ford Algorithm

This algorithm solves the single source shortest path problem of a directed
graph G = (V, E) in which the edge weights may be negative. Moreover, this
algorithm can be applied to find the shortest path, if there does not exist any
negative weighted cycle.

Analysis

Algorithm: Bellman-Ford-Algorithm (G, w, s)
for each vertex v Є G.V
v.d := ∞
v.∏ := NIL
s.d := 0
for i = 1 to |G.V| - 1
for each edge (u, v) Є G.E
if v.d > u.d + w(u, v)
v.d := u.d +w(u, v)
v.∏ := u
for each edge (u, v) Є G.E
if v.d > u.d + w(u, v)
return FALSE
return TRUE

The first for loop is used for initialization, which runs in O(V) times. The
next for loop runs |V - 1| passes over the edges, which takes O(E) times.

Hence, Bellman-Ford algorithm runs in O(V, E) time.

Example

The following example shows how Bellman-Ford algorithm works step by step.
This graph has a negative edge but does not have any negative cycle, hence the
problem can be solved using this technique.

At the time of initialization, all the vertices except the source are marked by ∞
and the source is marked by 0.

In the first step, all the vertices which are reachable from the source are
updated by minimum cost. Hence, vertices a and h are updated.

In the next step, vertices a, b, f and e are updated.

Following the same logic, in this step vertices b, f, c and g are updated.

Here, vertices c and d are updated.

Hence, the minimum distance between vertex s and vertex d is 20.

Based on the predecessor information, the path is s→ h→ e→ g→ c→ d

What is Branch and bound?

Branch and bound

Branch and bound is one of the techniques used for problem solving. It is similar to the
backtracking since it also uses the state space tree. It is used for solving the optimization
problems and minimization problems. If we have given a maximization problem then we can
convert it using the Branch and bound technique by simply converting the problem into a
maximization problem.

Let's understand through an example.

Jobs = {j1, j2, j3, j4}

P = {10, 5, 8, 3}

d = {1, 2, 1, 2}

The above are jobs, problems and problems given. We can write the solutions in two ways
which are given below:

Suppose we want to perform the jobs j1 and j2 then the solution can be represented in two
ways:

The first way of representing the solutions is the subsets of jobs.

S1 = {j1, j4}

The second way of representing the solution is that first job is done, second and third jobs
are not done, and fourth job is done.

S2 = {1, 0, 0, 1}

The solution s1 is the variable-size solution while the solution s2 is the fixed-size solution.

First, we will see the subset method where we will see the variable size.

First method: (First in First out (FIFO)Search)

In this case, we first consider the first job, then second job, then third job and finally we
consider the last job.

As we can observe in the above figure that the breadth first search is performed but not the
depth first search. Here we move breadth wise for exploring the solutions. In backtracking,
we go depth-wise whereas in branch and bound, we go breadth wise.

Now one level is completed. Once I take first job, then we can consider either j2, j3 or j4. If
we follow the route then it says that we are doing jobs j1 and j4 so we will not consider jobs
j2 and j3.

Now we will consider the node 3. In this case, we are doing job j2 so we can consider either
job j3 or j4. Here, we have discarded the job j1.

Now we will expand the node 4. Since here we are doing job j3 so we will consider only job
j4.

Now we will expand node 6, and here we will consider the jobs j3 and j4.

Now we will expand node 7 and here we will consider job j4.

Now we will expand node 9, and here we will consider job j4.

The last node, i.e., node 12 which is left to be expanded. Here, we consider job j4.

The above is the state space tree for the solution s1 = {j1, j4}

Second method: (Last in First out (LIFO) Search)

We will see another way to solve the problem to achieve the solution s1.

First, we consider the node 1 shown as below:

Now, we will expand the node 1. After expansion, the state space tree would be appeared as:

On each expansion, the node will be pushed into the stack shown as below:

Now the expansion would be based on the node that appears on the top of the stack. Since
the node 5 appears on the top of the stack, so we will expand the node 5. We will pop out the
node 5 from the stack. Since the node 5 is in the last job, i.e., j4 so there is no further scope of
expansion.

The next node that appears on the top of the stack is node 4. Pop out the node 4 and expand.
On expansion, job j4 will be considered and node 6 will be added into the stack shown as
below:

The next node is 6 which is to be expanded. Pop out the node 6 and expand. Since the node
6 is in the last job, i.e., j4 so there is no further scope of expansion.

The next node to be expanded is node 3. Since the node 3 works on the job j2 so node 3 will
be expanded to two nodes, i.e., 7 and 8 working on jobs 3 and 4 respectively. The nodes 7
and 8 will be pushed into the stack shown as below:

The next node that appears on the top of the stack is node 8. Pop out the node 8 and expand.
Since the node 8 works on the job j4 so there is no further scope for the expansion.

The next node that appears on the top of the stack is node 7. Pop out the node 7 and expand.
Since the node 7 works on the job j3 so node 7 will be further expanded to node 9 that works
on the job j4 as shown as below and the node 9 will be pushed into the stack.

The next node that appears on the top of the stack is node 9. Since the node 9 works on the
job 4 so there is no further scope for the expansion.

The next node that appears on the top of the stack is node 2. Since the node 2 works on the
job j1 so it means that the node 2 can be further expanded. It can be expanded upto three
nodes named as 10, 11, 12 working on jobs j2, j3, and j4 respectively. There newly nodes will
be pushed into the stack shown as below:

In the above method, we explored all the nodes using the stack that follows the LIFO
principle.

Third method (Least -Count Search (LC))

There is one more method that can be used to find the solution and that method is Least cost
branch and bound. In this technique, nodes are explored based on the cost of the node. The
cost of the node can be defined using the problem and with the help of the given problem,
we can define the cost function. Once the cost function is defined, we can define the cost of
the node.

Let's first consider the node 1 having cost infinity shown as below:

Now we will expand the node 1. The node 1 will be expanded into four nodes named as 2, 3,
4 and 5 shown as below:

Let's assume that cost of the nodes 2, 3, 4, and 5 are 25, 12, 19 and 30 respectively.

Since it is the least cost branch n bound, so we will explore the node which is having the least
cost. In the above figure, we can observe that the node with a minimum cost is node 3. So, we
will explore the node 3 having cost 12.

Since the node 3 works on the job j2 so it will be expanded into two nodes named as 6 and 7
shown as below:

The node 6 works on job j3 while the node 7 works on job j4. The cost of the node 6 is 8 and
the cost of the node 7 is 7. Now we have to select the node which is having the minimum cost.

The node 7 has the minimum cost so we will explore the node 7. Since the node 7 already
works on the job j4 so there is no further scope for the expansion.

 Travelling salesman problem (TSP)

 Quadratic assignment problem (QAP)

 Maximum satisfiability problem (MAX-SAT)

 Nearest neighbor search

 Flow shop scheduling

 Parameter estimation

 0/1 knapsack problem

Travelling Salesman Problem- using Branch and bound

You are given-

• A set of some cities

• Distance between every pair of cities

Travelling Salesman Problem states-

• A salesman has to visit every city exactly once.

• He has to come back to the city from where he starts his journey.

• What is the shortest possible route that the salesman must follow to complete his tour?

Example-

The following graph shows a set of cities and distance between every pair of cities-

If salesman starting city is A, then a TSP tour in the graph is-

A → B → D → C → A

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Quadratic_assignment_problem
https://en.wikipedia.org/wiki/Maximum_satisfiability_problem
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Flow_shop_scheduling
https://en.wikipedia.org/wiki/Set_estimation
https://en.wikipedia.org/wiki/0/1_knapsack_problem

Cost of the tour

= 10 + 25 + 30 + 15

= 80 units

PRACTICE PROBLEM BASED ON TRAVELLING SALESMAN
PROBLEM USING BRANCH AND BOUND APPROACH-
Problem-

Solve Travelling Salesman Problem using Branch and Bound Algorithm in the following graph-

Solution-

Step-01:

Write the initial cost matrix and reduce it-

Row Reduction-

Consider the rows of above matrix one by one.

If the row already contains an entry ‘0’, then-

• There is no need to reduce that row.

If the row does not contains an entry ‘0’, then-

• Reduce that particular row.

• Select the least value element from that row.

• Subtract that element from each element of that row.

• This will create an entry ‘0’ in that row, thus reducing that row.

Following this, we have-

• Reduce the elements of row-1 by 4.

• Reduce the elements of row-2 by 5.

• Reduce the elements of row-3 by 6.

• Reduce the elements of row-4 by 2.

Performing this, we obtain the following row-reduced matrix-

Rules
• To reduce a matrix, perform the row reduction and column reduction of the matrix

separately.

• A row or a column is said to be reduced if it contains at least one entry ‘0’ in it.

Column Reduction-

Consider the columns of above row-reduced matrix one by one.

If the column already contains an entry ‘0’, then-

• There is no need to reduce that column.

If the column does not contains an entry ‘0’, then-

• Reduce that particular column.

• Select the least value element from that column.

• Subtract that element from each element of that column.

• This will create an entry ‘0’ in that column, thus reducing that column.

Following this, we have-

• There is no need to reduce column-1.

• There is no need to reduce column-2.

• Reduce the elements of column-3 by 1.

• There is no need to reduce column-4.

Performing this, we obtain the following column-reduced matrix-

Finally, the initial distance matrix is completely reduced.

Now, we calculate the cost of node-1 by adding all the reduction elements.

Cost(1)

= Sum of all reduction elements

= 4 + 5 + 6 + 2 + 1

= 18

Step-02:

• We consider all other vertices one by one.

• We select the best vertex where we can land upon to minimize the tour cost.

Choosing To Go To Vertex-B: Node-2 (Path A → B)

• From the reduced matrix of step-01, M[A,B] = 0

• Set row-A and column-B to ∞

• Set M[B,A] = ∞

Now, resulting cost matrix is-

Now,

• We reduce this matrix.

• Then, we find out the cost of node-02.

Row Reduction-

• We can not reduce row-1 as all its elements are ∞.

• Reduce all the elements of row-2 by 13.

• There is no need to reduce row-3.

• There is no need to reduce row-4.

Performing this, we obtain the following row-reduced matrix-

Column Reduction-

• Reduce the elements of column-1 by 5.

• We can not reduce column-2 as all its elements are ∞.

• There is no need to reduce column-3.

• There is no need to reduce column-4.

Performing this, we obtain the following column-reduced matrix-

Finally, the matrix is completely reduced.

Now, we calculate the cost of node-2.

Cost(2)

= Cost(1) + Sum of reduction elements + M[A,B]

= 18 + (13 + 5) + 0

= 36

Choosing To Go To Vertex-C: Node-3 (Path A → C)

• From the reduced matrix of step-01, M[A,C] = 7

• Set row-A and column-C to ∞

• Set M[C,A] = ∞

Now, resulting cost matrix is-

Now,

• We reduce this matrix.

• Then, we find out the cost of node-03.

Row Reduction-

• We can not reduce row-1 as all its elements are ∞.

• There is no need to reduce row-2.

• There is no need to reduce row-3.

• There is no need to reduce row-4.

Thus, the matrix is already row-reduced.

Column Reduction-

• There is no need to reduce column-1.

• There is no need to reduce column-2.

• We can not reduce column-3 as all its elements are ∞.

• There is no need to reduce column-4.

Thus, the matrix is already column reduced.

Finally, the matrix is completely reduced.

Now, we calculate the cost of node-3.

Cost(3)

= Cost(1) + Sum of reduction elements + M[A,C]

= 18 + 0 + 7

= 25

Choosing To Go To Vertex-D: Node-4 (Path A → D)

• From the reduced matrix of step-01, M[A,D] = 3

• Set row-A and column-D to ∞

• Set M[D,A] = ∞

Now, resulting cost matrix is-

Now,

• We reduce this matrix.

• Then, we find out the cost of node-04.

Row Reduction-

• We can not reduce row-1 as all its elements are ∞.

• There is no need to reduce row-2.

• Reduce all the elements of row-3 by 5.

• There is no need to reduce row-4.

Performing this, we obtain the following row-reduced matrix-

Column Reduction-

• There is no need to reduce column-1.

• There is no need to reduce column-2.

• There is no need to reduce column-3.

• We can not reduce column-4 as all its elements are ∞.

Thus, the matrix is already column-reduced.

Finally, the matrix is completely reduced.

Now, we calculate the cost of node-4.

Cost(4)

= Cost(1) + Sum of reduction elements + M[A,D]

= 18 + 5 + 3

= 26

Thus, we have-

• Cost(2) = 36 (for Path A → B)

• Cost(3) = 25 (for Path A → C)

• Cost(4) = 26 (for Path A → D)

We choose the node with the lowest cost.

Since cost for node-3 is lowest, so we prefer to visit node-3.

Thus, we choose node-3 i.e. path A → C.

Step-03:

We explore the vertices B and D from node-3.

We now start from the cost matrix at node-3 which is-

Cost(3) = 25

Choosing To Go To Vertex-B: Node-5 (Path A → C → B)

• From the reduced matrix of step-02, M[C,B] = ∞

• Set row-C and column-B to ∞

• Set M[B,A] = ∞

Now, resulting cost matrix is-

Now,

• We reduce this matrix.

• Then, we find out the cost of node-5.

Row Reduction-

• We can not reduce row-1 as all its elements are ∞.

• Reduce all the elements of row-2 by 13.

• We can not reduce row-3 as all its elements are ∞.

• Reduce all the elements of row-4 by 8.

Performing this, we obtain the following row-reduced matrix-

Column Reduction-

• There is no need to reduce column-1.

• We can not reduce column-2 as all its elements are ∞.

• We can not reduce column-3 as all its elements are ∞.

• There is no need to reduce column-4.

Thus, the matrix is already column reduced.

Finally, the matrix is completely reduced.

Now, we calculate the cost of node-5.

Cost(5)

= cost(3) + Sum of reduction elements + M[C,B]

= 25 + (13 + 8) + ∞

= ∞

Choosing To Go To Vertex-D: Node-6 (Path A → C → D)

• From the reduced matrix of step-02, M[C,D] = ∞

• Set row-C and column-D to ∞

• Set M[D,A] = ∞

Now, resulting cost matrix is-

Now,

• We reduce this matrix.

• Then, we find out the cost of node-6.

Row Reduction-

• We can not reduce row-1 as all its elements are ∞.

• There is no need to reduce row-2.

• We can not reduce row-3 as all its elements are ∞.

• We can not reduce row-4 as all its elements are ∞.

Thus, the matrix is already row reduced.

Column Reduction-

• There is no need to reduce column-1.

• We can not reduce column-2 as all its elements are ∞.

• We can not reduce column-3 as all its elements are ∞.

• We can not reduce column-4 as all its elements are ∞.

Thus, the matrix is already column reduced.

Finally, the matrix is completely reduced.

Now, we calculate the cost of node-6.

Cost(6)

= cost(3) + Sum of reduction elements + M[C,D]

= 25 + 0 + 0

= 25

Thus, we have-

• Cost(5) = ∞ (for Path A → C → B)

• Cost(6) = 25 (for Path A → C → D)

We choose the node with the lowest cost.

Since cost for node-6 is lowest, so we prefer to visit node-6.

Thus, we choose node-6 i.e. path C → D.

Step-04:

We explore vertex B from node-6.

We start with the cost matrix at node-6 which is-

Cost(6) = 25

Choosing To Go To Vertex-B: Node-7 (Path A → C → D → B)

• From the reduced matrix of step-03, M[D,B] = 0

• Set row-D and column-B to ∞

• Set M[B,A] = ∞

Now, resulting cost matrix is-

Now,

• We reduce this matrix.

• Then, we find out the cost of node-7.

Row Reduction-

• We can not reduce row-1 as all its elements are ∞.

• We can not reduce row-2 as all its elements are ∞.

• We can not reduce row-3 as all its elements are ∞.

• We can not reduce row-4 as all its elements are ∞.

Column Reduction-

• We can not reduce column-1 as all its elements are ∞.

• We can not reduce column-2 as all its elements are ∞.

• We can not reduce column-3 as all its elements are ∞.

• We can not reduce column-4 as all its elements are ∞.

Thus, the matrix is already column reduced.

Finally, the matrix is completely reduced.

All the entries have become ∞.

Now, we calculate the cost of node-7.

Cost(7)

= cost(6) + Sum of reduction elements + M[D,B]

= 25 + 0 + 0

= 25

Thus,

• Optimal path is: A → C → D → B → A

• Cost of Optimal path = 25 units

	DESIGN AND ANALYSIS OF ALGORITHMS
	LECTURE MATERIAL
	(2022-2023)
	Time Complexity:
	Space Complexity:

	DESIGN AND ANALYSIS OF ALGORITHMS
	DISJOINT SETS
	BACKTRACKING

	DYNAMIC PROGRAMMING
	INTRODUCTION
	Example 1:
	Solution:
	Example 2:

	0/1 KNAPSACK PROBLEM
	Example 1:
	Solution:
	Other Solution:

	ALL PAIRS SHORTEST PATHS
	Example 1:

	TRAVELING SALES PERSON PROBLEM
	Example 1:

	RELIABILITY DESIGN
	UNIT-IV
	General method:
	Advantages
	Consider the graph which is given below:

	Job Sequencing With Deadlines
	The problem states-
	Job2, Job4, Job3, Job5, Job1

	Knapsack Problem
	What are all the items the thief should take?

	Minimum cost spanning trees:
	Minimum Spanning Tree
	Prim’s Algorithm
	3), (3, 4), (3, 7)}.
	Some of the properties of the spanning tree are listed below:
	What Is A Minimum Spanning Tree (MST)
	There are two most popular algorithms that are used to find the minimum spanning tree in a graph.

	Kruskal’s Algorithm
	Kruskal’s algorithm finds a subset of a graph G such that:
	The sequence of steps for Kruskal’s algorithm is given as follows:
	Pseudocode for Kruskal’s Algorithm
	Now let us see the illustration of Kruskal’s algorithm.

	Prim’s Algorithm
	The sequence of steps for Prim’s Algorithm is as follows:
	Pseudocode for Prim’s Algorithm

	Dijkstra’s Algorithm
	Bellman Ford Algorithm
	Travelling Salesman Problem- using Branch and bound
	PRACTICE PROBLEM BASED ON TRAVELLING SALESMAN PROBLEM USING BRANCH AND BOUND APPROACH-
	Solution- Step-01:
	Step-02:
	Step-04:

