

Computer Organization and Architecture

 1

Input-Output organization

Peripheral devices

 In addition to the processor and a set of memory modules, the third key element of a

computer system is a set of input-output subsystem referred to as I/O, provides an

efficient mode of communication between the central system and the outside

environment.

 Programs and data must be entered into computer memory for processing and results

obtained from computations must be recorded or displayed for the user.

 Devices that are under the direct control of the computer are said to be connected on-

line. These devices are designed to read information into or out of the memory unit

upon command from CPU.

 Input or output devices attached to the computer are also called peripherals.

 Among the most common peripherals are keyboards, display units, and printers.

 Perhaps those provide auxiliary storage for the systems are magnetic disks and tapes.

 Peripherals are electromechanical and electromagnetic devices of some complexity.

 We can broadly classify peripheral devices into three categories:

o Human Readable: Communicating with the computer users, e.g. video
display terminal, printers etc.

o Machine Readable: Communicating with equipments, e.g. magnetic disk,
magnetic tape, sensor, actuators used in robotics etc.

o Communication: Communicating with remote devices means exchanging
data with that, e.g. modem, NIC (network interface Card) etc.

Fig: Block diagram of Peripheral device

 Control signals determine the function that the device will perform such as send

data to I/O module, accept data from I/O module.

 Status signals indicate the state of the device i.e. device is ready or not.

 Data bits are actual data transformation.

Computer Organization and Architecture

 2

 Control logic associated with the device controls the device's operation in response to

direction from the I/O module.

 The transducer converts data from electrical to other forms of energy during

output and from other forms to electrical during input.

 Buffer is associated with the transducer to temporarily hold data being transferred

between the I/O module and external devices i.e. peripheral environment.

Input Device

 Keyboard

 Optical input devices

o Card Reader

o Paper Tape Reader

o Optical Character Recognition (OCR)

o Optical Bar code reader (OBR)

o Digitizer

o Optical Mark Reader

 Magnetic Input Devices

o Magnetic Stripe Reader

o Magnetic Ink Character Recognition (MICR)

 Screen Input Devices

o Touch Screen

o Light Pen

o Mouse

 Analog Input Devices

Output Device

 Card Puncher, Paper Tape Puncher

 Monitor (CRT, LCD, LED)

 Printer (Impact, Ink Jet, Laser, Dot Matrix)

 Plotter

 Analog

 Voice

I/O modules

 I/O modules interface to the system bus or central switch (CPU and Memory), interfaces

and controls to one or more peripheral devices. I/O operations are accomplished through

a wide assortment of external devices that provide a means of exchanging data between

external environment and computer by a link to an I/O module. The link is used to

exchange control status and data between I/O module and the external devices.

Computer Organization and Architecture

 3

Fig: Model of I/O module

 Peripherals are not directly connected to the system bus instead an I/O module is used

which contains logic for performing a communication between the peripherals and the

system bus. The reasons due to which peripherals do not directly connected to the system

bus are:

o There are a wide variety of peripherals with various methods of operation. It
would be impractical to incorporate the necessary logic within the processor to
control a range of devices.

o The data transfer rate of peripherals is often much slower than that of the memory
or processor. Thus, it is impractical to use high speed system bus to communicate
directly with a peripheral and vice versa.

o Peripherals often use different data format and word length than the computer to
which they are connected.

 Thus an I/O module is required which performs two major functions.

 Interface to the processor and memory via the system bus

 Interface to one or more peripherals by tailored data links

I/O Module Functions

 The I/O module is a special hardware component interface between the CPU and

peripherals to supervise and synchronize all I/O transformation The detailed functions of

I/O modules are;

Control & Timing: I/O module includes control and timing to coordinate the flow of

traffic between internal resources and external devices. The control of the transfer of data

from external devices to processor consists following steps:

o The processor interrogates the I/O module to check status of the attached device.

o The I/O module returns the device status.
o If the device is operational and ready to transmit, the processor requests the

transfer of data by means of a command to I/O module.

o The I/O module obtains the unit of data from the external device.

o The data are transferred from the I/O module to the processor.
Processor Communication: I/O module communicates with the processor which

involves:

Computer Organization and Architecture

 4

o Command decoding: I/O module accepts commands from the processor.

o Data: Data are exchanged between the processor and I/O module over the bus.
o Status reporting: Peripherals are too slow and it is important to know the status of

I/O module.
o Address recognition: I/O module must recognize one unique address for each

peripheral it controls.

Device Communication: It involves commands, status information and data.

Data Buffering: I/O module must be able to operate at both device and memory speeds.

If the I/O device operates at a rate higher than the memory access rate, then the I/O

module performs data buffering. If I/O devices rate slower than memory, it buffers data

so as not to tie up the memory in slower transfer operation.

Error Detection: I/O module is responsible for error detection such as mechanical and

electrical malfunction reported by device e.g. paper jam, bad ink track & unintentional

changes to the bit pattern and transmission error.

I/O Module Structure

Fig: Block diagram of I/O Module

 The I/O bus from the processor is attached to all peripheral interfaces

 To communicate with the particular devices, the processor places a device address on the

address bus.

 Each interface contains an address decoder that monitors the address line. When the

interface detects the particular device address, it activates the path between the data line

and devices that it controls.

 At the same time that the address is made available in the address line, the processor

provides a function code in the control way includes control command, output data and

input data.

I/O Module Decisions

 Hide or reveal device properties to CPU

 Support multiple or single device

Computer Organization and Architecture

 5

 Control device functions or leave for CPU

 Also O/S decisions

o e.g. Unix treats everything it can as a file

Input-Output interface

 Input-Output interface provides a method for transferring information between internal

storage (such as memory and CPU registers) and external I/O devices.

 Peripherals connected to a computer need special communication l nks for interfacing

them with the central processing unit.

 The communication link resolves the following differences between the computer and

peripheral devices.

o Devices and signals
Peripherals - Electromechanical Devices

CPU or Memory - Electronic Device

o Data Transfer Rate
Peripherals - Usually slower

CPU or Memory - Usually faster than peripherals

Some kinds of Synchronization mechanism may be needed

o Unit of Information
Peripherals - Byte

CPU or Memory - Word

o Operating Modes

Peripherals - Autonomous, Asynchronous

CPU or Memory – Synchronous

 To resolve these differences, computer systems include special hardware components

(Interfaces) between the CPU and peripherals to supervise and synchronize all input and

output interfaces.

I/O Bus and Interface Modules

 The I/O bus consists of data lines, address lines and control lines.

Fig: Connection of I/O bus to input-output devices

 Interface performs the following:

o Decodes the device address (device code)

o Decodes the commands (operation)

o Provides signals for the peripheral controller

Computer Organization and Architecture

 6

o Synchronizes the data flow and supervises the transfer rate between peripheral
and CPU or Memory

 I/O commands that the interface may receive:

o Control command: issued to activate the peripheral and to inform it what to do.
o Status command: used to test various status conditions in the interface and the

peripheral.

o Output data: causes the interface to respond by transferring data from the bus into
one of its registers.

o Input data: is the opposite of the data output.

I/O versus Memory Bus

 Computer buses can be used to communicate with memory and I/O in three ways:

o Use two separate buses, one for memory and other for I/O. In this method, all
data, address and control lines would be separate for memory and I/O.

o Use one common bus for both memory and I/O but have separate control lines.
There is a separate read and write lines; I/O read and I/O write for I/O and
memory read and memory write for memory.

o Use a common bus for memory and I/O with common control line. This I/O
configuration is called memory mapped.

Isolated I/O versus Memory Mapped I/O

 Isolated I/O

o Separate I/O read/write control lines in addition to memory read/write control lines

o Separate (isolated) memory and I/O address spaces

o Distinct input and output instructions

 Memory-mapped I/O

o A single set of read/write control lines (no distinction between memory and I/O
transfer)

o Memory and I/O addresses share the common address space which reduces memory
address range available

o No specific input or output instruction so the same memory reference instructions can
be used for I/O transfers

o Considerable flexibility in handling I/O operations

Example of I/O Interface

Computer Organization and Architecture

 7

 Information in each port can be assigned a meaning depending on the mode of operation

of the I/O device

o Port A = Data; Port B = Command; Port C = Status

 CPU initializes (loads) each port by transferring a byte to the Control Register

o Allows CPU can define the mode of operation of each port
o Programmable Port: By changing the bits in the control register, it is possible to

change the interface characteristics

Modes of transfer

 Data Transfer between the central computer and I/O devices may be handled in a variety of

modes.

 Some modes use CPU as an intermediate path, others transfer the data directly to and from

the memory unit.

 Data transfer to and from peripherals may be handled in one of three possible modes.

o Programmed I/O

o Interrupt Driven I/O

o Direct Memory Access (DMA)

Computer Organization and Architecture

 8

Programmed I/O

 Programmed I/O operations are the result of I/O instructions written in the

computer program.

 In programmed I/O, each data transfer in initiated by the instructions in the CPU

and hence the CPU is in the continuous monitoring of the interface.

 Input instruction is used to transfer data from I/O device to CPU, store instruction

is used to transfer data from CPU to memory and output instruction is used to

transfer data from CPU to I/O device.

 This technique is generally used in very slow speed computer and is not a

efficient method if the speed of the CPU and I/O is differen .

Fig: Data transfer from I/O device to CPU

Computer Organization and Architecture

 9

 I/O device places the data on the I/O bus and enables its data valid signal

 The interface accepts the data in the data register and sets the F bit of status

register and also enables the data accepted signal.

 Data valid line is disables by I/O device.

 CPU is in a continuous monitoring of the interface in which it checks the F bit of

the status register.

o If it is set i.e. 1, then the CPU reads the data from data register and sets F
bit to zero

o If it is reset i.e. 0, then the CPU remains monitoring the interface.

 Interface disables the data accepted signal and the system goes to initial state

where next item of data is placed on the data bus.

Fig: Flowchart for CPU program to input data

Characteristics:

 Continuous CPU involvement

 CPU slowed down to I/O speed

 Simple

 Least hardware

Polling, or polled operation, in computer science, refers to actively sampling the status of an

external device by a client program as a synchronous activity. Polling is most often used in terms

of input/output (I/O), and is also referred to as polled I/O or software driven I/O.

Computer Organization and Architecture

 10

Interrupt-driven I/O

 Polling takes valuable CPU time

 Open communication only when some data has to be passed -> Interrupt.

 I/O interface, instead of the CPU, monitors the I/O device

 When the interface determines that the I/O device is ready for data transfer, it

generates an Interrupt Request to the CPU

 Upon detecting an interrupt, CPU stops momentarily the task it is doing, branches

to the service routine to process the data transfer, and then returns to the task it

was performing

The problem with programmed I/O is that the processor has to wait a long time for

the I/O module of concern to be ready for either reception or transmission of data.

The processor, while waiting, must repeatedly interrogate the status of the I/O

module. As a result, the level of the performance of the entire system is severely

degraded. An alternative is for the processor to issue an I/O command to a module

and then go on to do some other useful work. The I/O module will then interrupt the

processor to request service when it is ready to exchange data with processor. The

processor then executes the data transfer, and then resumes its former processing. The

interrupt can be initiated either by software or by hardware.

Interrupt Driven I/O basic operation

 CPU issues read command

 I/O module gets data from peripheral whilst CPU does other work

 I/O module interrupts CPU

 CPU requests data

 I/O module transfers data

Interrupt Processing from CPU viewpoint

 Issue read command

 Do other work

 Check for interrupt at end of each instruction cycle

 If interrupted:-

o Save context (registers)

o Process interrupt

o Fetch data & store

Computer Organization and Architecture

 11

Fig: Simple Interrupt Processing

Priority Interrupt

 Determines which interrupt is to be served first when two or more requests are

made simultaneously

 Also determines which interrupts are permitted to interrupt the computer while

another is being serviced

 Higher priority interrupts can make requests while servicing a lower priority

interrupt

Priority Interrupt by Software (Polling)

 Priority is established by the order of polling the devices (interrupt sources), that

is identify the highest-priority source by software means

 One common branch address is used for all interrupts

 Program polls the interrupt sources in sequence

 The highest-priority source is tested first

 Flexible since it is established by software

 Low cost since it needs a very little hardware

 Very slow

Computer Organization and Architecture

 12

Priority Interrupt by Hardware

 Require a priority interrupt manager which accepts all the interrupt requests to

determine the highest priority request

 Fast since identification of the highest priority interrupt request is identified by

the hardware

 Fast since each interrupt source has its own interrupt vector to access directly to

its own service routine

1. Daisy Chain Priority (Serial)

Fig: Daisy Chain priority Interrupt

 Interrupt Request from any device

 CPU responds by INTACK

 Any device receives signal(INTACK) at PI puts the VAD on the bus

 Among interrupt requesting devices the only device which is physically

closest to CPU gets INTACK and it blocks INTACK to propagate to the

next device

Fig: One stage of Daisy chain priority arrangement

2. Parallel Priority

Computer Organization and Architecture

 13

Fig: Parallel priority interrupts hardware

 IEN: Set or Clear by instructions ION or IOF

 IST: Represents an unmasked interrupt has occurred. INTACK enables

tristate Bus Buffer to load VAD generated by the Priority Logic

 Interrupt Register:

o Each bit is associated with an Interrupt Request from different
Interrupt Source - different priority level

o Each bit can be cleared by a program instruction

 Mask Register:

o

o

Priority Encoder

Mask Register is associated with Interrupt Register

Each bit can be set or cleared by an Instruction

 Determines the highest priority interrupt when more than one interrupts take place

Fig: Priority Encoder Truth Table

Interrupt Cycle

At the end of each Ins ruction cycle

Computer Organization and Architecture

 14

 CPU checks IEN and IST

 If IEN and IST = 1, CPU -> Interrupt Cycle

o SP SP – 1; Decrement stack pointer

o M[SP] PC; Push PC into stack

o INTACK 1; Enable interrupt acknowledge

o PC VAD; Transfer vector address to PC

o IEN 0; Disable further interrupts

o Go To Fetch to execute the first instruction in the in errupt service routine

Direct Memory access

 Large blocks of data transferred at a high speed to or from high speed devices,

magnetic drums, disks, tapes, etc.

 DMA controller Interface that provides I/O transfer of data directly to and from

the memory and the I/O device

 CPU initializes the DMA controller by sending a memory address and the number

of words to be transferred

 Actual transfer of data is done directly between the device and memory through

DMA controller -> Freeing CPU for other tasks

The transfer of data between the peripheral and memory without the interaction of CPU

and letting the peripheral device manage the memory bus directly is termed as Direct

Memory Access (DMA).

Fig: CPU bus signal for DMA transfer

The two control signals Bus Request and Bus Grant are used

to fascinate the DMA

transfer. The bus request input is used by the DMA controller to request the CPU for the

control of the buses. When BR signal is high, the CPU terminates the execution of the

current instructions and then places the address, data, read and write lines to the high

impedance state and sends the bus grant signal. The DMA controller now takes the

control of the buses and transfers the data directly between memory and I/O without

processor interaction. When the transfer is completed, the bus request signal is made low

by DMA. In response to which CPU disables the bus grant and again CPU takes the

control of address, data, read and write lines.

The transfer of data between the memory and I/O of course facilitates in two ways which

are DMA Burst and Cycle Stealing.

DMA Burst: The block of data consisting a number of memory words is transferred at a

time.

Computer Organization and Architecture

 15

Cycle Stealing: DMA transfers one data word at a time after which it must return control

of the buses to the CPU.

 CPU is usually much faster than I/O (DMA), thus CPU uses the most of the

memory cycles

 DMA Controller steals the memory cycles from CPU

 For those stolen cycles, CPU remains idle

 For those slow CPU, DMA Controller may steal most of the memory cycles

which may cause CPU remain idle long time

DMA Controller

The DMA controller communicates with the CPU through the data bus and control lines.

DMA select signal is used for selecting the controller, the register select is for selecting

the register. When the bus grant signal is zero, the CPU communicates through the data

bus to read or write into the DMA register. When bus grant is one, the DMA controller

takes the control of buses and transfers the data between the memory and I/O.

Fig: Block diagram of DMA controller

The address register specifies the desired location of the memory which is incremented

after each word is transferred to the memory. The word count register holds the number

of words to be transferred which is decremented after each transfer until it is zero. When

it is zero, it indicates the end of transfer. After which the bus grant signal from CPU is

made low and CPU returns to its normal operation. The control register specifies the

mode of transfer which is Read or Write.

DMA Transfer

 DMA request signal is given from I/O device to DMA controller.

Computer Organization and Architecture

 16

 DMA sends the bus request signal to CPU in response to which CPU disables its current

instructions and initialize the DMA by sending the following information.

o The starting address of the memory block where the data are available (for read)
and where data to be stored (for write)

o The word count which is the number of words in the memory block

o Control to specify the mode of transfer

o Sends a bust grant as 1 so that DMA controller can take the control of the buses
o DMA sends the DMA acknowledge signal in response to which peripheral device

puts the words in the data bus (for write) or receives a word from the data bus (for
read).

Fig: DMA transfer in a computer system

DMA Operation

 CPU tells DMA controller:-

o Read/Write

o Device address

o Starting address of memory block for data

o Amount of data to be transferred

 CPU carries on with other work

 DMA controller deals with transfer

 DMA controller sends interrupt when finished

I/O Processors

 Processor with direct memory access capability that communicates with I/O devices

 Channel accesses memory by cycle stealing

Computer Organization and Architecture

 17

 Channel can execute a Channel Program

 Stored in the main memory

 Consists of Channel Command Word(CCW)

 Each CCW specifies the parameters needed by the channel to control the I/O devices

and perform data transfer operations

 CPU initiates the channel by executing a channel I/O class instruction and once

initiated, channel operates independently of the CPU

A computer may incorporate one or more external processors and assign them the task of

communicating directly with the I/O devices so that no each interface need to communicate with

the CPU. An I/O processor (IOP) is a processor with direct memory access capability that

communicates with I/O devices. IOP instructions are specifically designed to facilitate I/O

transfer. The IOP can perform other processing tasks such as arithmetic logic, branching and

code translation.

Fig: Block diagram of a computer with I/O Processor

The memory unit occupies a central position and can communicate with each processor by

means of direct memory access. The CPU is responsible for processing data needed in the

solution of computational tasks. The IOP provides a path for transferring data between various

peripheral devices and memory unit.

In most computer systems, the CPU is the master while the IOP is a slave processor. The CPU

initiates the IOP and after which the IOP operates independent of CPU and transfer data between

the peripheral and memory. For example, the IOP receives 5 bytes from an input device at the

device rate and bit capacity. After which the IOP packs them into one block of 40 bits and

transfer them to memory. Similarly the O/P word transfer from memory to IOP is directed from

the IOP to the O/P device at the device rate and bit capacity.

CPU – IOP Communication

The memory unit acts as a message center where each processor leaves information for the other.

The operation of typical IOP is appreciated with the example by which the CPU and IOP

communication.

Computer Organization and Architecture

 18

Fig: CPU – IOP communication

 The CPU sends an instruction to test the IOP path.

 The IOP responds by inserting a status word in memory for the CPU to check.

 The bits of the status word indicate the condition of the IOP and I/O device, such as IOP

overload condition, device busy with another transfer or device ready for I/O transfer.

 The CPU refers to the status word in in memory to decide what to do next.

 If all right up to this, the CPU sends the instruction to start I/O transfer.

 The CPU now continues with another program while IOP is busy with I/O program.

 When IOP terminates the execution, it sends an interrupt request to CPU.

 CPU responds by issuing an instruction to read the status from the IOP.

 IOP responds by placing the contents to its status report into specified memory location.

 Status word indicates whether the transfer has been completed or with error.

Data Communication Processor

 Distributes and collects data from many remote terminals connected through

telephone and other communication lines.

 Transmission:

o Synchronous

o Asynchronous

 Transmission Error:

o Parity

o Checksum

o Cyclic Redundancy Check

Computer Organization and Architecture

 19

o Longitudinal Redundancy Check

 Transmission Modes:

o Simples

o Half Duplex

o Full Duplex

 Data Link & Protocol

A data communication (command) processor is an I/O processor that distributes and collects data

from remote terminals connected through telephone and other communication lines. In processor

communication, processor communicates with the I/O device through a common bus i.e. data

and control with sharing by each peripherals. In data communication, processor communicates

with each terminal through a single pair of wires.

The way that remote terminals are connected to a data communication processor is via telephone

lines or other public or private communication facilities. The data communication may be either

through synchronous transmission or through asynchronous transmission. One of the functions of

data communication processor is check for transmission errors. An error can be detected by

checking the parity in each character received. The other ways are checksum, longitudinal

redundancy check (LRC) and cyclic redundancy check (CRC).

Data can be transmitted between two points through three different modes. First is simplex

where data can be transmitted in only one direction such as TV broadcasting. Second is half

duplex where data can be transmitted in both directions at a time such as walkie-talkie. The third

is full duplex where data can be transmitted in both directions simultaneously such as telephone.

The communication lines, modems and other equipment used in the transmission of information

between two or more stations is called data link. The orderly transfer of information in a data

link is accomplished by means of a protocol.

COMPUTER ORGANIZATION AND ARCHITECTURE

1

Memory Hierarchy
Memory is used for storing programs and data that are required to
perform a specific task.

For CPU to operate at its maximum speed, it required an uninterrupted
and high speed access to these memories that contain programs and data.
Some of the criteria need to be taken into consideration while deciding
which memory is to be used:

• Cost

• Speed

• Memory access time

• Data transfer rate, Reliability

COMPUTER ORGANIZATION AND ARCHITECTURE

2

How Memories attached to CPU

COMPUTER ORGANIZATION AND ARCHITECTURE

3

A computer system contains various types of memories like auxiliary memory,
cache memory, and main memory.

• Auxiliary Memory

The auxiliary memory is at the bottom and is not connected with the CPU directly.
However, being slow, it is present in large volume in the system due to its low
pricing. This memory is basically used for storing the programs that are not needed
in the main memory. This helps in freeing the main memory which can be utilized
by other programs that needs main memory. The main function of this memory is
to provide parallel searching that can be used for performing a search on an entire
word.

• Main Memory

The main memory is at the second level of the hierarchy. Due to its direct
connection with the CPU, it is also known as central memory. The main memory
holds the data and the programs that are needed by the CPU. The main memory
mainly consists of RAM, which is available in static and dynamic mode.

• Cache Memory

Cache memory is at the top level of the memory hierarchy. This is a high speed

COMPUTER ORGANIZATION AND ARCHITECTURE

4

memory used to increase the speed of processing by making current programs
and data available to the CPU at a rapid rate. Cache memory is usually placed
between the CPU and the main memory.

COMPUTER ORGANIZATION AND ARCHITECTURE

5

COMPUTER ORGANIZATION AND ARCHITECTURE

6

Main Memory

• Central storage unit in a computer system

• Large memory

• Made up of Integrated chips

• Types:

RAM (Random access memory)

ROM (Read only memory)

COMPUTER ORGANIZATION AND ARCHITECTURE

7

RAM (Random Access Memory)

Random access memory (RAM) is the best
known form of computer memory. RAM is
considered "random access" because you can
access any memory cell directly if you know
the row and column that intersect at that cell.

Types of RAM:-

• Static RAM (SRAM)

• Dynamic RAM (DRAM)

COMPUTER ORGANIZATION AND ARCHITECTURE

8

• Static RAM (SRAM)

– a bit of data is stored using the state of a flip-flop.

– Retains value indefinitely, as long as it is kept powered.

– Mostly uses to create cache memory of CPU.

– Faster and more expensive than DRAM.

• Dynamic RAM (DRAM)

– Each cell stores bit with a capacitor and transistor.

– Large storage capacity

– Needs to be refreshed frequently.

– Used to create main memory.

COMPUTER ORGANIZATION AND ARCHITECTURE

9

– Slower and cheaper than SRAM.

COMPUTER ORGANIZATION AND ARCHITECTURE

10

ROM
ROM is used for storing programs that are Permanently resident in
the computer and for tables of constants that do not change in
value once the production of the computer is completed

The ROM portion of main memory is needed for storing an initial
program called bootstrap loader, witch is to start the computer
software operating when power is turned on.

There are five basic ROM types:

• ROM - Read Only Memory

• PROM - Programmable Read Only Memory

• EPROM - Erasable Programmable Read Only Memory

• EEPROM - Electrically Erasable Programmable Read Only Memory

• Flash EEPROM memory

COMPUTER ORGANIZATION AND ARCHITECTURE

11

RAM and ROM Chips

• A RAM chip is better suited for
communication with the CPU if it has one or
more control inputs that select the chip when
needed

• The Block diagram of a RAM chip is shown

next slide, the capacity of the memory is 128
words of 8 bits (one byte) per word

COMPUTER ORGANIZATION AND ARCHITECTURE

12

RAM

COMPUTER ORGANIZATION AND ARCHITECTURE

13

ROM

COMPUTER ORGANIZATION AND ARCHITECTURE

14

Memory Address Map

• Memory Address Map is a pictorial representation of
assigned address space for each chip in the system

• To demonstrate an example, assume that a computer

system needs 512 bytes of RAM and 512 bytes of
ROM

• The RAM have 128 byte and need seven address

lines, where the ROM have 512 bytes and need 9
address lines

COMPUTER ORGANIZATION AND ARCHITECTURE

15

COMPUTER ORGANIZATION AND ARCHITECTURE

16

• The hexadecimal address assigns a range of
hexadecimal equivalent address for each chip

• Line 8 and 9 represent four distinct binary

combination to specify which RAM we chose

• When line 10 is 0, CPU selects a RAM. And

when it’s 1, it selects the ROM

COMPUTER ORGANIZATION AND ARCHITECTURE

17

COMPUTER ORGANIZATION AND ARCHITECTURE

18

Memory connection to the CPU

COMPUTER ORGANIZATION AND ARCHITECTURE

19

Cache memory

• If the active portions of the program and data
are placed in a fast small memory, the average
memory access time can be reduced

• Thus reducing the total execution time of the
program

• Such a fast small memory is referred to as
cache memory

• The cache is the fastest component in the
memory hierarchy and approaches the speed
of CPU component

COMPUTER ORGANIZATION AND ARCHITECTURE

20

• When CPU needs to access memory, the cache
is examined

• If the word is found in the cache, it is read
from the fast memory

• If the word addressed by the CPU is not found
in the cache, the main memory is accessed to
read the word

COMPUTER ORGANIZATION AND ARCHITECTURE

21

• When the CPU refers to memory and finds the
word in cache, it is said to produce a hit

• Otherwise, it is a miss

• The performance of cache memory is

frequently measured in terms of a quantity
called hit ratio

Hit ratio = hit / (hit+miss)

COMPUTER ORGANIZATION AND ARCHITECTURE

22

• The basic characteristic of cache memory is its fast
access time

• Therefore, very little or no time must be wasted
when searching the words in the cache

• The transformation of data from main memory to
cache memory is referred to as a mapping process,
there are three types of mapping:

– Associative mapping

– Direct mapping

– Set-associative mapping

COMPUTER ORGANIZATION AND ARCHITECTURE

23

• To help understand the mapping procedure,
we have the following example:

COMPUTER ORGANIZATION AND ARCHITECTURE

24

Associative mapping

• The fastest and most flexible cache
organization uses an associative memory

• The associative memory stores both the
address and data of the memory word

• This permits any location in cache to store ant
word from main memory

• The address value of 15 bits is shown as a five-
digit octal number and its corresponding 12-
bit word is shown as a four-digit octal number

COMPUTER ORGANIZATION AND ARCHITECTURE

25

COMPUTER ORGANIZATION AND ARCHITECTURE

26

• A CPU address of 15 bits is places in the
argument register and the associative memory
us searched for a matching address

• If the address is found, the corresponding 12-
bits data is read and sent to the CPU

• If not, the main memory is accessed for the
word

• If the cache is full, an address-data pair must
be displaced to make room for a pair that is
needed and not presently in the cache

COMPUTER ORGANIZATION AND ARCHITECTURE

27

Direct Mapping

• Associative memory is expensive compared to

RAM

• In general case, there are 2^k words in cache
memory and 2^n words in main memory (in
our case, k=9, n=15)

• The n bit memory address is divided into two
fields: k-bits for the index and n-k bits for the
tag field

COMPUTER ORGANIZATION AND ARCHITECTURE

28

Addressing relationships between main and cache memories

COMPUTER ORGANIZATION AND ARCHITECTURE

29

COMPUTER ORGANIZATION AND ARCHITECTURE

30

Set-Associative Mapping

• The disadvantage of direct mapping is that
two words with the same index in their
address but with different tag values cannot
reside in cache memory at the same time

• Set-Associative Mapping is an improvement

over the direct-mapping in that each word of
cache can store two or more word of memory

COMPUTER ORGANIZATION AND ARCHITECTURE

31

under the same index address

COMPUTER ORGANIZATION AND ARCHITECTURE

32

COMPUTER ORGANIZATION AND ARCHITECTURE

33

COMPUTER ORGANIZATION AND ARCHITECTURE

34

• Each index address refers to two data words
and their associated tags

• Each tag requires six bits and each data word
has 12 bits, so the word length is 2*(6+12) =
36 bits

COMPUTER ORGANIZATION AND ARCHITECTURE

1

 UNIT-5

Reduced Set Instruction Set Architecture (RISC) –

The main idea behind is to make hardware simpler by using an instruction set

composed of a few basic steps for loading, evaluating and storing operations just

like a load command will load data, store command will store the data.

Complex Instruction Set Architecture (CISC) –

The main idea is that a single instruction will do all loading, evaluating and storing

operations just like a multiplication command will do stuff like loading data,

evaluating and storing it, hence it’s complex.

Both approaches try to increase the CPU performance

 RISC: Reduce the cycles per instruction at the cost of the number of

instructions per program.

 CISC: The CISC approach attempts to minimize the number of instructions

per program but at the cost of increase in number of cycles per instruction.

Earlier when programming was done using assembly language, a need was felt

to make instruction do more task because programming in assembly was

tedious and error prone due to which CISC architecture evolved but with up

rise of high level language dependency on assembly reduced RISC

architecture prevailed.

Characteristic of RISC –

1. Simpler instruction, hence simple instruction decoding.

2. Instruction come under size of one word.

3. Instruction take single clock cycle to get executed.

4. More number of general purpose register.

5. Simple Addressing Modes.

6. Less Data types.

7. Pipeline can be achieved.

Characteristic of CISC –

1. Complex instruction, hence complex instruction decoding.

2. Instruction are larger than one word size.

COMPUTER ORGANIZATION AND ARCHITECTURE

2

3. Instruction may take more than single clock cycle to get executed.

4. Less number of general purpose register as operation get performed in

memory itself.

5. Complex Addressing Modes.

6. More Data types.

Example – Suppose we have to add two 8-bit number:

 CISC approach: There will be a single command or instruction for this like

ADD which will perform the task.

 RISC approach: Here programmer will write first load command to load

data in registers then it will use suitable operator and then it will store result

in desired location.

So, add operation is divided into parts i.e. load, operate, store due to which RISC

programs are longer and require more memory to get stored but require less

transistors due to less complex command.

Difference –

RISC CISC

Focus on software Focus on hardware

Uses only Hardwired control unit

Uses both hardwired and micro

programmed control unit

Transistors are used for more

registers

Transistors are used for storing

complex

Instructions

Fixed sized instructions Variable sized instructions

Can perform only Register to Can perform REG to REG or REG to

COMPUTER ORGANIZATION AND ARCHITECTURE

3

RISC CISC

Register Arithmetic operations MEM or MEM to MEM

Requires more number of registers Requires less number of registers

Code size is large Code size is small

A instruction execute in single clock

cycle

Instruction take more than one clock

cycle

A instruction fit in one word Instruction are larger than size of one

The general definition of a processor or a microprocessor is: A small chip that is

placed inside computer as well as other electronic devices.

In very simple terms, the main job a processor is to receive input and then provide

the appropriate output (depending on the input).

Modern day processors, have become so advanced that they can handle trillions of

calculations per second, increasing efficiency and performance.

Both RISC and CISC architectures have been developed largely as a breakthrough

to cover the semantic gap. The semantic gap, is the gap which is present between

machine language and high level language.

Therefore the main objective of creating these two architectures is to improve the

efficiency of software development, and by doing so, there has been several

programming languages which have been developed as a result, such as Ada, C++,

C, and Java etc.

These programming languages provide a high level of power and abstraction.

COMPUTER ORGANIZATION AND ARCHITECTURE

4

Therefore to allow for efficient compilation of these high level language programs,

RISC and CISC are used.

What are RISC processors?

Reduced Instruction Set Computer (RISC), is a type of computer architecture

which operates on small, highly optimised set of instructions, instead of a more

specialised set of instructions, which can be found in other types of architectures.

This architecture means that the computer microprocessor will have fewer cycles

per instruction.

The word “Reduced Instruction Set” may be incorrectly interpreted to refer to

“reduced number of instructions”. Though this is not the case, the term actually

means that the amount of work done by each instruction is decreased in terms of

number of cycles.

Due to the design of Alan Turing 1946 Automatic Computing Engine, it had many

characteristics that resembled RISC architecture, furthermore many traits of RISC

architectures were seen in the 1960s due to them embodying the load/store

approach.

That being said the term RISC had first been used by David Patterson of “Berkeley

RISC project”, who is considered to be a pioneer in his RISC processor designs.

Patterson is currently the Vice Chair of Board of Directors of the RISC-V

Foundation.

A RICS chip doesn’t require many transistors, which makes them less costly to

design and to produce. One of RISCs main characteristics is that the instruction set

contains relatively simple and basic instruction from which more complex

instructions can be produced.

COMPUTER ORGANIZATION AND ARCHITECTURE

5

Some the terminology which can be handy to understand:

 LOAD: Moves data from the memory bank to a register.

 PROD: Finds product of two operands located within the register.

 STORE: Moves data from a register to the memory banks.

Addressing modes: An address mode is an aspect of instruction set architecture in

most CPU designs.

 The RISC architecture utilises simple instructions.

 RISC synthesises complex data types and supports few simple data types.

 RISC makes use of simple addressing modes and fixed length instructions

for pipelining.

 RISC allows any register to be used in any context.

 RISC has only one cycle for execution time.

 The work load of a computer that has to be performed is reduced by

operating the “LOAD” and “STORE” instructions.

 RISC prevents various interactions with memory, it does this by have a large

number of registers.

 Pipelining in RISC is carried out relatively simply. This is due to the

execution of instructions being done in a uniform interval of time (i.e. one

click).

 More RAM is required to store assembly level instructions.

 Reduced instructions need a smaller number of transistors in RISC.

 RISC utilises the Harvard architecture

 To execute the conversion operation, a compiler is used. This allows the

conversion of high-level language statements into code of its form.

COMPUTER ORGANIZATION AND ARCHITECTURE

6

 RISC processors utilise pipelining.

 Pipelining is a process that involves improving the performance of the

CPU. The process is completed by fetching, decoding, and executing

cycles of three separate instructions at the same time.

A RISC architecture systems contains a small core logic processor, which enables

engineers to increase the register set and increase internal parallelism by using the

following techniques:

Thread Level Parallelism:

Thread level parallelism increases the number of parallel threads executed by the

CPU.

Thread level parallelism can also be identified as “Task Parallelism”, which is a

form of parallel computing for multiple computer processors, using a technique for

distributing the execution of processes and threads across different parallel

processor nodes. This type of parallelism is mostly used in multitasking operating

systems, as well as applications that depend on processes and threads.

Instruction Level Parallelism:

Instructions level parallelism increases the speed of the CPU in executing

instructions. This type of parallelism that measures how many of the instructions in

a computer can be executed simultaneously.

However Instruction level parallelism is not to be confused with concurrency.

Instruction level parallelism is about the parallel election of a sequence of

instructions, which belong to a specific thread of execution of a process.

Whereas concurrency is about threads of one or different processes being assigned

by the CPU’s core in a mannered and strict alteration or in true parallelism

(provided that there are enough CPU cores).

Advantages of RISC processors

 Due to the architecture having a set of instructions, this allows high level

language compilers to produce more efficient code.

 This RISC architecture allows simplicity, which therefore means that it

allows developers the freedom to utilise the space on the microprocessor.

 RISC processors make use of the registers to pass arguments and to hold

local variables.

COMPUTER ORGANIZATION AND ARCHITECTURE

7

 RISC makes use of only a few parameters, furthermore RISC processors

cannot call instructions, and therefore, use a fixed length instruction, which

is easy to pipeline.

 Using RISC, allows the execution time to be minimised, whilst increasing

the speed of the overall operation, maximising efficiency.

 As mentioned above, RISC is relatively simple, this is due to having very

few instructional formats, and a small number of instructions and a few

addressing modes required.

Disadvantages of RISC processors

 The performance of RISC processors depends on the compiler or the

programmer. The following instructions might rely on the previous

instruction to finish their execution.

 RISC processors require very fast memory systems to feed various

instructions, thus a large memory cache is required.

What are CISC processors?

CISC, which stands for “Complex Instruction Set Computer”, is computer

architecture where single instructions can execute several low level operations, for

instance, “load from memory an arithmetic operation, and a memory store). CISC

processors are also capable of executing multi-step operations or addressing modes

with single instructions.

CISC, as with RISC, is a type of microprocessor that contains specialised

simple/complex instructions.

Until recent times, all major manufacturers of microprocessors had used CISC

based designs to develop their products. The reason for that was because, CISC

was introduced around the early 1970’s, where it was used for simple electronic

platforms, such as stereos, calculators, video games, not personal computers,

therefore allowing the CISC technology to be used for these types of applications,

as it was more suitable.

However, eventually, CISC microprocessors found their way into personal

computers, this was to meet the increasing need of PC users. CISC manufactures

started to focus their efforts from general-purpose designs to a high performance

computing orientation.

Advantageously, CISC processors helped in simplifying the code and making it

shorter in order to reduce the memory requirements.

COMPUTER ORGANIZATION AND ARCHITECTURE

8

In CISC processors, each single instruction has several low level operations. Yes,

this makes CISC instructions short, but complex.

Some examples of CISC processors are:

 IBM 370/168 and Intel 80486

 Also non-trivial items such as government databases were built using a

CISC processor

The characteristics of CISC processors

As mentioned above, the main objective of CISC processors is to minimise the

program size by decreasing the number of instructions in a program.

However to do this, CISC has to embed some of the low level instructions in a

single complex instruction. Moreover, this means that when it is decoded, this

instruction generates several microinstructions to execute.

The complex architecture of CISC is below:

Microprogram Control Unit:

The microprogram control unit uses a series of microinstructions of the

microprogram stored in the “control memory” of the microprogram control unit

and generate control signals.

COMPUTER ORGANIZATION AND ARCHITECTURE

9

Control Unit:

The control units access the control signals, which are produced by the

microprogram control unit, moreover they operate the functioning of processors

hardware.

Instructions and data path:

The instructions and the data path retrieve/fetches the opcode and operands of the

instructions from the memory.

Cache and main memory:

This is the location where the program instructors and operands are stored.

Instructions in CISC are complex, and they occupy more than a single word in

memory. Like we saw in RISC, CISC also uses LOAD/STORE to access the

memory operands, however CISC also has a “MOVE” instruction attribute, which

is used to gain access to memory operands.

Though one advantageous characteristic of the “MOVE” operation, is that it has a

wider scope. This allows the CISC instructions to directly access memory

operands.

CISC instruction sets also have additional addressing modes:

 Auto-increment mode:

 The address of an operand is the content of the register. It is

automatically incremented after accessing the registers content, in order

to point to the memory location of the next operand.

 Auto-decrement mode:

 Like “auto-increment”, the address of an operand is the content of the

register. However with auto-decrement, initially the contest of register is

decremented, moreover then the content of the register is used as an

address for an operand.

 Relative Mode:

 The program counter is used instead of a general-purpose register. This

allows to refer large range of area in memory.

Advantages of CISC processors

 Memory requirement is minimised due to code size.

 The execution of a single instruction will also execute and complete several

low level tasks.

 Memory access is more flexible due to the complex addressing mode.

COMPUTER ORGANIZATION AND ARCHITECTURE

10

 Memory locations can be directly accessed by CISC instructions.

 Microprogramming is easy to implement and less expensive than wiring a

control unit.

 If new commands are to be added to the chip, the structure of the instruction

set does not need to be changed. This is because the CISC architecture uses

general purpose hardware to carry out commands.

 The compiler doesn’t have to be complicated, as the microprogram

instruction sets can be written to match the high-level language constructs.

Disadvantages of CISC processors

 Although the code size is minimised, the code requires several clock cycles

to execute a single instruction. Therefore decreasing the efficiency of the

system.

 The implementation of pipelining in CISC is regarded to be complicated.

 In order to simplify the software, the hardware structure needs to be more

complex.

 CISC was designed to minimise the memory requirement when memory was

smaller and more expensive. However nowadays memory is inexpensive and

the majority of new computer systems have a large amount of memory,

compared to the 1970’s when CISC first emerged.

RISC vs. CISC

RISC CISC

RISC focuses on software CISC focuses on hardware

Single clock, reduced

instruction only, which

means the instructions are

simple compared to CISC

Multi-clock complex instructions

COMPUTER ORGANIZATION AND ARCHITECTURE

11

RISC CISC

Operates on Register to

Register. However

“LOAD” and “STORE”

are independent

instructions

CISC operates from Memory to Memory: The

“LOAD” and “STORE” incorporated in

instructions. Also uses MOVE

RISC has large code

sizes, which means it

operates low cycles per

second

CISC has small code sizes, high cycles per second

Spends more transistors

on memory registers

The transistors in a CISC processor are used to store

complex instructions

Less memory access More memory access

Implementing pipelining

on RISC is easier

Due to CISC instructions being of variable length,

and having multiple operands, as well as complex

addressing modes and complex instructions this

increases complexity. Furthermore, CISC as defined

above, occupies more than a memory word. Thus

taking several cycles to execute operand fetch.

Implementing pipelining on CISC is complicated

Although the above showcases differences between the two architectures, the main

difference between RISC and CISC is the CPU time taken to execute a given

program.

CPU execution time is calculated using this formula:

CPU time = (number of instruction) x (average cycles per instruction) x (seconds

per cycle)

RISC architectures will shorten the execution time by reducing the average clock

cycle per one instruction.

COMPUTER ORGANIZATION AND ARCHITECTURE

12

However, CISC architectures try to reduce execution time by reducing the number

of instructions per program.

Summary and Facts

A reduced Instruction Set Computer (RISC), can be considered as an evolution of

the alternative to Complex Instruction Set Computing (CISC). With RISC, in

simple terms, its function is to have simple instructions that do less but execute

very quickly to provide better performance.

What are RISC processors?

 Reduced Instruction Set Computer (RISC), is a type of computer

architecture which operates on small, highly optimised set of instructions,

instead of a more specialised set of instructions, which can be found in other

types of architectures. This architecture means that the computer

microprocessor will have fewer cycles per instruction.

 RISC processors/architectures are used across a wide range of platforms

nowadays, ranging from tablet computers to smartphones, as well as

supercomputers

 Thread Level Parallelism:

 Thread level parallelism increases the number of parallel threads

executed by the CPU.

 Instruction Level Parallelism:

 Instructions level parallelism increases the speed of the CPU’s executing

instructions.

Advantages and Disadvantages of RISC processors

Advantages:

 Greater performance due to simplified instruction set

 Uses pipelining efficiently

 RISC can be easily designed in compared to CISC

 Less expensive, as they use smaller chips

Disadvantages:

 Performance of the processor will depend on the code being executed

 RISC processors require very fast memory systems to feed different

instructions. This requires a large memory cache.

The characteristics of RISC processor structure:

 Hardwired Control Unit

 Data Path

 Instruction Cache

COMPUTER ORGANIZATION AND ARCHITECTURE

13

 Data Cache

 Main Memory

 Only Load and store instructions have access to memory

 Fewer number of addressing modes

 RISC includes a less complex pipelining architecture compared to CISC

What are CISC processors?

 CISC, which stands for “Complex Instruction Set Computer”, is computer

architecture where single instructions can execute several low level

operations. CISC processors are also capable of executing multi-step

operations or addressing modes with single instructions.

 CISC, as with RISC, is a type of microprocessor that contains specialised

simple/complex instructions.

 The primary objective for CISC processors is to complete a task in as few

lines of assembly as possible. To accomplish this, processor hardware must

be built able to comprehend and execute a series of operations.

Advantages and disadvantages of CISC processors:

Advantages:

 Allows for simple small scripts

 Using CISC, complex commands are readable

 Most code is built to be implemented on CISC

Disadvantages:

 CISC processors are larger as they contain more transistors

 May take multiple cycles per line of code, decreasing efficiency

 Lower clock speed

 Complex use of pipelining

 Compared to RISC, they are more complex, which means they are more

expensive

The characteristics of CISC processor structure:

 Microprogram Control Unit

 Control Unit

 Instructions and data path

 Cache and main memory

CISC instruction sets also have additional addressing modes:

 Auto-increment mode

 Auto-decrement mode

 Relative Mode

 CISC uses STORE/LOAD/MOVE

1

Computer organization and architecture

Unit- 5 (b) Pipelining and Vector Processing

Parallel Processing:

The term parallel processing indicates that the system is able to perform several operations in a

single time. Now we will elaborate the scenario, in a CPU we will be having only one Accumulator

which will be storing the results obtained from the current operation. Now if we are giving only one

command such that “a+b” then the CPU performs the operation and stores the result in the

accumulator. Now we are talking about parallel processing, therefore we will be issuing two

instructions “a+b” and “c-d” in the same time, now if the result of “a+b” operation is stored in the

accumulator, then “c-d” result cannot be stored in the accumulator in the same time. Therefore the term

parallel processing in not only based on the Arithmetic, logic or shift operations. The above problem

can be solved in the following manner. Consider the registers R1 and R2 which will be storing the

operands before operation and R3 is the register which will be storing the results after the operations.

Now the above two instructions “a+b” and “c-d” will be done in parallel as follows.

• Values of “a” and “b” are fetched in to the registers R1 and R2

• The values of R1 and R2 will be sent into the ALU unit to perform the addition

• The result will be stored in the Accumulator

• When the ALU unit is performing the calculation, the next data “c” and “d” are brought into

R1 and R2.

• Finally the value of Accumulator obtained from “a+b” will be transferred into the R3

• Next the values of C and D from R1 and R2 will be brought into the ALU to perform the “c-

d” operation.

• Since the accumulator value of the previous operation is present in R3, the result of “c-d”

can be safely stored in the Accumulator.

This is the process of parallel processing of only one CPU. Consider several such CPU performing the

calculations separately. This is the concept of parallel processing.

2

Computer organization and architecture

In the above figure we can see that the data stored in the processor registers is being sent to

separate devices basing on the operation needed on the data. If the data inside the processor registers is

requesting for an arithmetic operation, then the data will be sent to the arithmetic unit and if in the same

time another data is requested in the logic unit, then the data will be sent to logic unit for logical

operations. Now in the same time both arithmetic operations and logical operations are executing in

parallel. This is called as parallel processing.

Instruction Stream: The sequence of instructions read from the memory is called as an Instruction

Stream

Data Stream: The operations performed on the data in the processor is called as a Data Stream.

The computers are classified into 4 types based on the Instruction Stream and Data Stream. They are

called as the Flynn's Classification of computers.

3

Computer organization and architecture

Flynn's Classification of Computers:

• Single Instruction Stream and Single Data Stream (SISD)

• Single Instruction Stream and Multiple Data Stream (SIMD)

• Multiple Instruction Stream and Single Data Stream (MISD)

• Multiple Instruction Stream and Multiple Data Stream (MIMD)

SISD represents the organization of a single computer containing a control unit, a processor unit and a

memory unit. Instructions are executed sequentially and the system may or may not have internal

parallel processing capabilities. Parallel processing in this case may be achieved by means of multiple

functional units or by pipeline processing.

SIMD represents an organization that includes many processing units under the supervision of a

common control unit. All processors receive the same instruction from the control unit but operate on

different items of data. The shared memory unit must contain multiple modules so that it can

communicate with all the processors simultaneously.

MISD structure is only of theoretical interest since no practical system has been constructed using this

organization because Multiple instruction streams means more no of instructions, therefore we have to

perform multiple instructions on same data at a time. This is practically impossible.

MIMD structure refers to a computer system capable of processing several programs at the same time

operating on different data.

Pipelining: Pipelining is a technique of decomposing a sequential process into sub operations, with

each sub process being executed in a special dedicated segment that operates concurrently with all

other segments. We can consider the pipelining concept as a collection of several segments of data

processing programs which will be processing the data and sending the results to the next segment until

the end of the processing is reached. We can visualize the concept of pipelining in the example below.

Consider the following operation: Result=(A+B)*C

• First the A and B values are Fetched which is nothing but a “Fetch Operation”.

• The result of the Fetch operations is given as input to the Addition operation, which is an

Arithmetic operation.

4

Computer organization and architecture

• The result of the Arithmetic operation is again given to the Data operand C which is fetched

from the memory and using another arithmetic operation which is Multiplication in this

scenario is executed.

• Finally the Result is again stored in the “Result” variable.

In this process we are using up-to 5 pipelines which are the

→ Fetch Operation (A)| Fetch Operation(B) | Addition of (A & B) | Fetch

Operation(C) | Multiplication of ((A+B), C) | Load ((A+B)*C), Result);

5

Computer organization and architecture

The contents of the Registers in the above pipeline concept are given below. We are considering the

implementation of A[7] array with B[7] array.

Clock

Pulse

Number

Segment1 Segment 2 Segment 3

1

R1 R2

A1 B1

R3 R4

- -

R5

-

2 A2 B2 A1*B1 C1 -

3 A3 B3 A2*B2 C2 A1*B1+C1

4 A4 B4 A3*B3 C3 A2*B2+C2

5 A5 B5 A4*B4 C4 A3*B3+C3

6 A6 B6 A5*B5 C5 A4*B4+C4

7 A7 B7 A6*B6 C6 A5*B5+C5

8 A7*B7 C7 A6*B6+C6

9 A7*B7+C7

If the above concept is executed with out the pipelining, then each data operation will be taking

5 cycles, totally they are 35 cycles of CPU are needed to perform the operation. But if are using the

concept of pipeline, we will be cutting off many cycles. Like given in the table below when the values

of A1 and B1 are coming into the registers R1 and R2, the registers R3, R4 and R5 are empty. Now in

the second cycle the multiplication of A1 and B1 is transferred to register R3, now in this point the

contents of the register R1 and R2 are empty. Therefore the next two values A2 and B2 can be brought

into the registers. Again in the third cycle after fetching the C1 value the operation (A1*B1)+C1 will

be performed. So in this way we can achieve the total concept in only 9 cycles. Here we are assuming

that the clock cycle timing is fixed. This is the concept of pipelining.

6

Computer organization and architecture

Below is the diagram of 4 segment pipeline.

7

Computer organization and architecture

The below table is the space time diagram for the execution of 6 tasks in the 4 segment pipeline.

Arithmetic pipeline:

The above diagram represents the implementation of arithmetic pipeline in the area of floating

point arithmetic operations. In the diagram, we can see that two numbers A and B are added together.

Now the values of A and B are not normalized, therefore we must normalize them before start to do

8

Computer organization and architecture

any operations. The first thing is we have to fetch the values of A and B into the registers. Here R

denote a set of registers. After that the values of A and B are normalized, therefore the values of the

exponents will be compared in the comparator. After that the alignment of mantissa will be taking

place. Finally, we will be performing addition, since an addition is happening in the adder circuit. The

source registers will be free and the second set of values can be brought. Like wise when the

normalizing of the result is taking place, addition of the new values will be added in the adder

9

Computer organization and architecture

circuit and when addition is going on, the new data values will be brought into the registers in the start

of the implementation. We can see how the addition is being performed in the diagram.

Instruction Pipeline: Pipelining concept is not only limited to the data stream, but can also be applied

on the instruction stream. The instruction pipeline execution will be like the queue execution. In the

queue the data that is entered first, will be the data first retrieved. Therefore when an instruction is first

coming, the instruction will be placed in the queue and will be executed in the system. Finally the

results will be passing on to the next instruction in the queue. This scenario is called as Instruction

pipelining. The instruction cycle is given below

• Fetch the instruction from the memory

• Decode the instruction

• calculate the effective address

• Fetch the operands from the memory

• Execute the instruction

• Store the result in the proper place.

In a computer system each and every instruction need not necessary to execute all the above phases. In

a Register addressing mode, there is no need of the effective address calculation. Below is the example

10

Computer organization and architecture

of the four segment instruction pipeline.

In the above diagram we can see that the instruction which is first executing has to be fetched from the

memory, there after we are decoding the instruction and we are calculating the effective address. Now

we have two ways to execute the instruction. Suppose we are using a normal instruction like ADD,

then the operands for that instruction will be fetched and the instruction will be executed. Suppose we

are executing an instruction such as Fetch command. The fetch command itself has internally three

more commands which are like ACTDR, ARTDR etc.., therefore we have to jump to that particular

location to execute the command, so we are using the branch operation. So in a branch operation, again

other instructions will be executed. That means we will be updating the PC value such that the

instruction can be executed. Suppose we are fetching the operands to perform the original operation

such as ADD, we need to fetch the data. The data can be fetched in two ways, either from the main

memory or else from an input output devices. Therefore in order to use the input output devices, the

devices must generate the interrupts which should be handled by the CPU. Therefore the handling of

interrupts is also a kind of program execution. Therefore we again have to start from the starting of the

program and execute the interrupt cycle.

11

Computer organization and architecture

The different instruction cycles are given below:

• FI → FI is a segment that fetches an instruction

• DA → DA is a segment that decodes the instruction and identifies the effective address.

• FO → FO is a segment that fetches the operand.

• EX → EX is a segment that executes the instruction with the operand.

Pipelining Conflicts: There are different conflicts that are caused by using the pipeline concept. They

are

• Resource Conflicts: These are caused by access to memory by two or more segments at the

same time. Most of these conflicts can be resolved by using separate instruction and data

memories

• Data Dependency: These conflicts arise when an instruction depends on the result of a

previous instruction, but this result is not yet available.

• Branch difficulties: These difficulties arise from branch and other instructions that change

the value of PC.

12

Computer organization and architecture

Data Dependency Conflict: The data dependency conflict can be solved by using the following

methods.

• Hardware Interlocks: The most straight forward method is to insert hardware interlocks. An

interlock is a circuit that detects instructions whose source operands are destination of

instructions farther up in the pipeline. Detection of this situation causes the instruction

whose source is not available to be delayed by enough clock cycles to resolve the conflict.

This approach maintains the program sequence by using hardware to insert the required

delay.

• Operand Forwarding: Another technique called operand forwarding uses special hardware

to detect a conflict and avoid the conflict path by using a special path to forward the values

between the pipeline segments.

• Delayed Load: The delayed load operation is nothing but when executing an instruction in

the pipeline, simply delay the execution starting of the instruction such that all the data that

is needed for the instruction can be successfully updated before execution.

Branch Conflicts:

The following are the solutions for solving the branch conflicts that are obtained in the pipelining

concept.

• Pre-fetch Target Instruction: In this the branch instructions which are to be executed are pre-

fetched to detect if any errors are present in the branch before execution.

• Branch Target Buffer: BTB is the associative memory implementation of the branch

conditions.

• Loop buffer: The loop buffer is a very high speed memory device. Whenever a loop is to be

executed in the computer. The complete loop will be transferred in to the loop buffer

memory and will be executed as in the cache memory.

13

Computer organization and architecture

• Branch Prediction: The use of branch prediction is such that, before a branch is to be

executed, the instructions along with the error checking conditions are checked. Therefore

we will not be going into any unnecessary branch loops.

• Delayed Branch: The delayed branch concept is same as the delayed load process in which

we are delaying the execution of a branch process, before all the data is fetched by the

system for beginning the CPU.

RISC Pipeline:

The ability to use the instruction pipelining concept in the RISC architecture is very efficient.

The simplicity of the instruction set can be utilized to implement an instruction pipeline using a small

number of sub operations, with each being executed in one clock cycle. Due to fixed length instruction

format, the decoding of the operation can occur at the same time as the register selection. Since the

arithmetic, logic and shift operations are done on register basis, there is no need for extra fetching or

effective address decoding steps to perform the operation. So pipelining concept can be effectively used

in this scenario. Therefore the total operations can be categorized as one segment will be fetching the

instruction from program memory, the other segment executes the instruction in the ALU and the third

segment may be used to store the result of the ALU operation in a destination register. The data transfer

instructions in RISC are limited to only Load and Store instructions. To prevent conflicts in data

transfer, we will be using two separate buses one for storing the instructions and other for storing the

data.

Example of three segment instruction pipeline:

We want to perform a operation in which there is some arithmetic, logic or shift operations. Therefore

as per the instruction cycle, we will be having the following steps:

• I: Instruction Fetch

• A: ALU Operation

• E: Execute Instruction.

The I segment will be fetching the instruction from program memory. The instruction is decoded and

an ALU operation is performed in the A segment. In the A segment the ALU operation instruction will

be fetched and the effective address will be retrieved and finally in the E segment the instruction will

be executed.

14

Computer organization and architecture

Delayed Load:

Consider the following instructions:

1. LOAD: R1 ← M[address 1]

2. LOAD: R2 ← M[address 2]

3. ADD: R3 ← R1 + R2

4. STORE: M[address 3] ← R3

The below tables will be showing the pipelining concept with the data conflict and without data conflict.

15

Computer organization and architecture

Vector Processing:

Normal computational systems are not enough in some special processing requirements. Such

as, in special processing systems like artificial intelligence systems and some weather forecasting

systems, terrain analysis, the normal systems are not sufficient. In such systems the data processing will

be involving on very high amount of data, we can classify the large data as a very big arrays. Now if we

want to process this data, naturally we will need new methods of data processing. The vectors are

considered as the large one dimensional array of data. The term vector processing involves the data

processing on the vectors of such large data.

The vector processing system can be understand by the example

below. Consider a program which is adding two arrays A and B of

length 100;

Machine level program

Initialize I=0

20 Read

A(I)

Read

B(I)

Store C(I)=A(I)+B(I)

Increment I=I+1

If I<=100 go to

20 continue

so in this above program we can see that the two arrays are being added in a loop format. First we are

starting from the value of 0 and then we are continuing the loop with the addition operation until the I

value has reached to 100. In the above program there are 5 loop statements which will be executing 100

times. Therefore the total cycles of the CPU taken is 500 cycles. But if we use the concept of vector

processing then we can reduce the unnecessary fetch cycles, since the fetch cycles are used in the

creation of the vector. The same program written in the vector processing statement is given below.

C(1:100)=A(1:100)+B(1:100)

In the above statement, when the system is creating a vector like this the original source values are

fetched from the memory into the vector, therefore the data is readily available in the vector. So when a

16

Computer organization and architecture

operation is initiated on the data, naturally the operation will be performed directly on the data and will

not wait for the fetch cycle. So the total no of CPU Cycles taken by the above instruction is only 100.

Instruction format of Vector Instruction

Below we can see the implementation of the vector processing concept on the following matrix

multiplication. In the matrix multiplication, we will be multiplying the row of A matrix with the

column of the B matrix elements individually finally we will be adding the results.

In the above diagram we can see that how the values of A vector and B Vector which represents the

matrix are being multiplied. Here we will be considering a 4x4 matrix A and B. Now the from the

source A vector we will be taking the first 4 values and will be sending to the multiplier pipeline along

with the 4 values from the vector B. The resultant 1 value is stored in the adder pipeline. Like wise

remaining values from a row and column multiplication will be brought into the adder pipeline, which

will be performing the addition of all the things finally we will have the result of one row to column

multiplication. When addition operation is taking place in the adder pipeline the next set of values will

be brought into the multiplier pipeline, so that all the operations can be performed simultaneously using

the parallel processing concepts by the implementation of pipeline.

17

Computer organization and architecture

Memory Interleaving:

Pipelining and vector processing naturally requires the several data elements for processing. So instead

of using the same memory and selecting one at a time, we will be using several modules of the memory

such that we can have separate data for each processing unit. As we can see in the above in the diagram

each memory array is designed independently of the next memory array. Such that when the data

needed for a operation is stored in the first memory array, another data for another operation can be

safely stored in the next memory array, so that the operations can be performed concurrently. This

process is called as memory interleaving.

Array Processors: In a distributed computing we will be having several computers working on the

same task such that their processing power will be shared among all the systems so that they can

perform the task fast. But the disadvantage of the distributed computing is that we have to give separate

resources for each system and every system need to be controlled by a task initiating system or can be

18

Computer organization and architecture

called as a central control unit. The management of this kind of systems is very hard. In order to

perform a specific operation involving a large processing there is no need of distributed computing.

The alternate for this kind of scenarios is array processors or attached array processors. The simplest is

the SIMD Attached array processor.

Attached Array processor

The above diagram shows that the system is attached a separate processor which will be used for

operation specific purpose. If the array processor is designed for solving floating point arithmetic, then

it will only perform that operations. The detailed figure of the attached array processor is given in the

diagram below. This will be having the SIMD architecture. In this we will be having a master control

unit which will be coordinating all the process in the array processor. Each processing unit in the array

processor is having a local memory unit as in the memory interleaving concept on which it performs

the operations. Finally we will be having a main memory in which the original source data and the

results that are obtained from the array processor will be stored. This

19

Computer organization and architecture

the working principle of the SIMD array processor technology.

SIMD Array Processor Technology

Computer organization and architecture

1

 MULTIPROCESSORS

 Multiprocessor:

 A set of processors connected by a communications network

Fig. 5.1 Basic multiprocessor architecure

 A multiprocessor system is an interconnection of two or more CPU’s with

memory and input-output equipment.

 Multiprocessors system are classified as multiple instruction stream, multiple data

stream systems(MIMD).

 There exists a distinction between multiprocessor and multicomputers that though

both support concurrent operations.

 In multicomputers several autonomous computers are connected through a

network and they may or may not communicate but in a multiprocessor system

there is a single OS Control that provides interaction between processors and all

the components of the system to cooperate in the solution of the problem.

 VLSI circuit technology has reduced the cost of the computers to such a low

Level that the concept of applying multiple processors to meet system

performance requirements has become an attractive design possibility.

Computer organization and architecture

2

Fig. 5.2 Taxonomy of mono- mulitporcessor organizations

Characteristics of Multiprocessors:

Benefits of Multiprocessing:

1. Multiprocessing increases the reliability of the system so that a failure or error in one

part has limited effect on the rest of the system. If a fault causes one processor to fail, a second

processor can be assigned to perform the functions of the disabled one.

2. Improved System performance. System derives high performance from the fact that

computations can proceed in parallel in one of the two ways:

a) Multiple independent jobs can be made to operate in parallel.

b) A single job can be partitioned into multiple parallel tasks.

This can be achieved in two ways:

- The user explicitly declares that the tasks of the program be executed in

parallel

Computer organization and architecture

3

- The compiler provided with multiprocessor s/w that can automatically detect

parallelism in program. Actually it checks for Data dependency

COUPLING OF PROCESSORS

Tightly Coupled System/Shared Memory:

- Tasks and/or processors communicate in a highly synchronized fashion

- Communicates through a common global shared memory

- Shared memory system. This doesn’t preclude each processor from having its own

local memory(cache memory)

Loosely Coupled System/Distributed Memory

- Tasks or processors do not communicate in a synchronized fashion.

- Communicates by message passing packets consisting of an address, the data

content, and some error detection code.

- Overhead for data exchange is high

- Distributed memory system

Loosely coupled systems are more efficient when the interaction between tasks is minimal,

whereas tightly coupled system can tolerate a higher degree of interaction between tasks.

Shared (Global) Memory

- A Global Memory Space accessible by all processors

- Processors may also have some local memory

Distributed (Local, Message-Passing) Memory

- All memory units are associated with processors

- To retrieve information from another processor's memory a message must be sent

there

Uniform Memory

- All processors take the same time to reach all memory locations Non-

uniform (NUMA) Memory

- Memory access is not uniform

Computer organization and architecture

4

Fig. 5.3 Shared and distributed memory

Shared memory multiprocessor:

Fig 5.4 Shared memory multiprocessor

Characteristics

- All processors have equally direct access to one large memory address space

Limitations

- Memory access latency; Hot spot problem

 Interconnection Structures:

The interconnection between the components of a multiprocessor System can have

different physical configurations depending n the number of transfer paths that are available

between the processors and memory in a shared memory system and among the processing

elements in a loosely coupled system.

Computer organization and architecture

5

Some of the schemes are as:

- Time-Shared Common Bus

- Multiport Memory

- Crossbar Switch

- Multistage Switching Network

- Hypercube System

a. Time shared common Bus

- All processors (and memory) are connected to a common bus or busses

- Memory access is fairly uniform, but not very scalable

- A collection of signal lines that carry module-to-module communication

- Data highways connecting several digital system elements

- Operations of Bus

Fig. 5.5 Time shared common bus organization

Fig. 5.6 system bus structure for multiprocessor

Computer organization and architecture

6

In the above figure we have number of local buses to its own local memory and to one or more

processors. Each local bus may be connected to a CPU, an IOP, or any combinations of

processors. A system bus controller links each local bus to a common system bus. The I/O

devices connected to the local IOP, as well as the local memory, are available to the local

processor. The memory connected to the common system bus is shared by all processors. If an

IOP is connected directly to the system bus the I/O devices attached to it may be made available

to all processors

Disadvantage.:

 Only one processor can communicate with the memory or another processor at

any given time.

 As a consequence, the total overall transfer rate within the system is limited by the

speed of the single path

b. Multiport Memory:

Multiport Memory Module

- Each port serves a CPU

Memory Module Control Logic

- Each memory module has control logic

- Resolve memory module conflicts Fixed priority among CPUs

Advantages

- The high transfer rate can be achieved because of the multiple paths.

Disadvantages:

- It requires expensive memory control logic and a large number of cables and

 connections

Fig. 5.7 Multiport memory

Computer organization and architecture

7

c. Crossbar switch:

- Each switch point has control logic to set up the transfer path between a processor

and a memory.

- It also resolves the multiple requests for access to the same memory on the

predetermined priority basis.

- Though this organization supports simultaneous transfers from all memory

modules because there is a separate path associated with each Module.

- The H/w required to implement the switch can become quite large and complex

a) b)

Fig. 5.8 a) cross bar switch b) Block diagram of cross bar switch

Advantage:

- Supports simultaneous transfers from all memory modules

Disadvantage:

- The hardware required to implement the switch can become quite large and complex.

d. Multistage Switching Network:

- The basic component of a multi stage switching network is a two-input, two- output

interchange switch.

Computer organization and architecture

8

Fig. 5.9 operation of 2X2 interconnection switch

Using the 2x2 switch as a building block, it is possible to build a multistage network to

control the communication between a number of sources and destinations.

- To see how this is done, consider the binary tree shown in Fig. below.

- Certain request patterns cannot be satisfied simultaneously. i.e., if

P1 € 000~011, then P2 € 100~111

Fig 5.10 Binary tree with 2x2 switches

Computer organization and architecture

9

Fig. 5.11 8X8 Omega switching network

Computer organization and architecture

10

- Some request patterns cannot be connected simultaneously. i.e., any two sources cannot

be connected simultaneously to destination 000 and 001

- In a tightly coupled multiprocessor system, the source is a processor and the destination is

a memory module.

- Set up the path € transfer the address into memory € transfer the data

- In a loosely coupled multiprocessor system, both the source and destination are

Processsing elements.

e. Hypercube System:

The hypercube or binary n-cube multiprocessor structure is a loosely coupled system

composed of N=2n processors interconnected in an n-dimensional binary cube.

- Each processor forms a node of the cube, in effect it contains not only a CPU but also

local memory and I/O interface.

- Each processor address differs from that of each of its n neighbors by exactly one bit

position.

- Fig. below shows the hypercube structure for n=1, 2, and 3.

- Routing messages through an n-cube structure may take from one to n links from a

source node to a destination node.

- A routing procedure can be developed by computing the exclusive-OR of the source

node address with the destination node address.

- The message is then sent along any one of the axes that the resulting binary value

will have 1 bits corresponding to the axes on which the two nodes differ.

- A representative of the hypercube architecture is the Intel iPSC computer complex.

- It consists of 128(n=7) microcomputers, each node consists of a CPU, a floating

point processor, local memory, and serial communication interface units

10

Computer organization and architecture

Fig. 5.12 Hypercube structures for n=1,2,3

 Inter-processor Arbitration

- Only one of CPU, IOP, and Memory can be granted to use the bus at a time

- Arbitration mechanism is needed to handle multiple requests to the shared resources to

resolve multiple contention

- SYSTEM BUS:

o A bus that connects the major components such as CPU’s, IOP’s and memory

o A typical System bus consists of 100 signal lines divided into three functional

groups: data, address and control lines. In addition there are power distribution

lines to the components.

- Synchronous Bus

o Each data item is transferred over a time slice

o known to both source and destination unit

o Common clock source or separate clock and synchronization signal is transmitted

periodically to synchronize the clocks in the system

- Asynchronous Bus

o Each data item is transferred by Handshake mechanism

 Unit that transmits the data transmits a control signal that indicates the

presence of data

 Unit that receiving the data responds with another control signal to

acknowledge the receipt of the data

11

Computer organization and architecture

o Strobe pulse -supplied by one of the units to indicate to the other unit when the

data transfer has to occur

Table 5.1 IEEE standard 796 multibus signals

12

Computer organization and architecture

Fig. 5.13 Inter-processor arbitration static arbitration

13

Computer organization and architecture

Interprocessor Arbitration Dynamic Arbitration

- Priorities of the units can be dynamically changeable while the system is in operation

- Time Slice

o Fixed length time slice is given sequentially to each processor, round- robin

fashion

- Polling

o Unit address polling -Bus controller advances the address to identify the

requesting unit. When processor that requires the access recognizes its address, it

activates the bus busy line and then accesses the bus. After a number of bus

cycles, the polling continues by choosing a different processor.

- LRU

o The least recently used algorithm gives the highest priority to the requesting

device that has not used bus for the longest interval.

- FIFO

o The first come first serve scheme requests are served in the order received. The

bus controller here maintains a queue data structure.

- Rotating Daisy Chain

o Conventional Daisy Chain -Highest priority to the nearest unit to the bus

controller

o Rotating Daisy Chain –The PO output of the last device is connected to the PI of

the first one. Highest priority to the unit that is nearest to the unit that has most

recently accessed the bus(it becomes the bus controller)

 Inter processor communication and synchronization:

- The various processors in a multiprocessor system must be provided with a facility for

communicating with each other.

o A communication path can be established through a portion of memory or

a common input-output channels.

14

Computer organization and architecture

- The sending processor structures a request, a message, or a procedure, and places it in the

memory mailbox.

o Status bits residing in common memory

o The receiving processor can check the mailbox periodically.

o The response time of this procedure can be time consuming.

- A more efficient procedure is for the sending processor to alert the receiving processor

directly by means of an interrupt signal.

- In addition to shared memory, a multiprocessor system may have other shared resources.

o e.g., a magnetic disk storage unit.

- To prevent conflicting use of shared resources by several processors there must be a

provision for assigning resources to processors. i.e., operating system.

- There are three organizations that have been used in the design of operating system for

multiprocessors: master-slave configuration, separate operating system, and distributed

operating system.

- In a master-slave mode, one processor, master, always executes the operating system

functions.

- In the separate operating system organization, each processor can execute the operating

system routines it needs. This organization is more suitable for loosely coupled systems.

- In the distributed operating system organization, the operating system routines are

distributed among the available processors. However, each particular operating system

function is assigned to only one processor at a time. It is also referred to as a floating

operating system.

Loosely Coupled System

- There is no shared memory for passing information.

- The communication between processors is by means of message passing through

I/O channels.

- The communication is initiated by one processor calling a procedure that resides in the

memory of the processor with which it wishes to communicate.

15

Computer organization and architecture

- The communication efficiency of the interprocessor network depends on the

communication routing protocol, processor speed, data link speed, and the

topology of the network.

Interprocess Synchronization

- The instruction set of a multiprocessor contains basic instructions that are used to

implement communication and synchronization between cooperating processes.

o Communication refers to the exchange of data between different processes.

o Synchronization refers to the special case where the data used to communicate

between processors is control information.

- Synchronization is needed to enforce the correct sequence of processes and to ensure

mutually exclusive access to shared writable data.

- Multiprocessor systems usually include various mechanisms to deal with the

synchronization of resources.

o Low-level primitives are implemented directly by the hardware.

o These primitives are the basic mechanisms that enforce mutual exclusion for

more complex mechanisms implemented in software.

o A number of hardware mechanisms for mutual exclusion have been

developed.

 A binary semaphore

Mutual Exclusion with Semaphore

- A properly functioning multiprocessor system must provide a mechanism that will

guarantee orderly access to shared memory and other shared resources.

o Mutual exclusion: This is necessary to protect data from being changed

simultaneously by two or more processors.

o Critical section: is a program sequence that must complete execution before

another processor accesses the same shared resource.

- A binary variable called a semaphore is often used to indicate whether or not a

processor is executing a critical section.

16

Computer organization and architecture

- Testing and setting the semaphore is itself a critical operation and must be

performed as a single indivisible operation.

- A semaphore can be initialized by means of a test and set instruction in

conjunction with a hardware lock mechanism.

- The instruction TSL SEM will be executed in two memory cycles (the first to read

and the second to write) as follows:

R M[SEM], M[SEM] 1

 Cache Coherence

cache coherence is the consistency of shared resource data that ends up stored in multiple local

caches. When clients in a system maintain caches of a common memory resource, problems may

arise with inconsistent data, which is particularly the case with CPUs in a multiprocessing

system.

Fig. 5.14 cache coherence

17

Computer organization and architecture

Shared Cache

-Disallow private cache

-Access time delay

Software Approaches

* Read-Only Data are Cacheable

- Private Cache is for Read-Only data

- Shared Writable Data are not cacheable

- Compiler tags data as cacheable and noncacheable

- Degrade performance due to software overhead

* Centralized Global Table

- Status of each memory block is maintained in CGT: RO(Read-Only);

RW(Read and Write)

- All caches can have copies of RO blocks

- Only one cache can have a copy of RW block

- Hardware Approaches

* Snoopy Cache Controller

- Cache Controllers monitor all the bus requests from CPUs and IOPs

- All caches attached to the bus monitor the write operations

- When a word in a cache is written, memory is also updated (write through)

- Local snoopy controllers in all other caches check their memory to determine if

they have a copy of that word; If they have, that location is marked invalid(future

reference to this location causes cache miss)

	Peripheral devices
	Input Device
	Output Device
	I/O modules
	I/O Module Functions
	I/O Module Structure
	I/O Module Decisions
	Input-Output interface
	I/O Bus and Interface Modules
	I/O versus Memory Bus
	Isolated I/O versus Memory Mapped I/O
	 Memory-mapped I/O
	Example of I/O Interface
	Modes of transfer
	Programmed I/O
	Characteristics:
	Interrupt-driven I/O
	Interrupt Driven I/O basic operation
	Interrupt Processing from CPU viewpoint
	Priority Interrupt
	Priority Interrupt by Software (Polling)
	Priority Interrupt by Hardware
	1. Daisy Chain Priority (Serial)
	2. Parallel Priority
	Priority Encoder
	Interrupt Cycle
	Direct Memory access
	DMA Controller
	DMA Transfer
	DMA Operation
	I/O Processors
	CPU – IOP Communication
	Data Communication Processor
	Memory Hierarchy
	How Memories attached to CPU

	Main Memory
	RAM (Random Access Memory)
	ROM

	RAM and ROM Chips
	RAM

	Cache memory
	Associative mapping
	Direct Mapping
	Set-Associative Mapping
	What are RISC processors?
	Advantages of RISC processors
	Disadvantages of RISC processors
	What are CISC processors?
	The characteristics of CISC processors
	Advantages of CISC processors
	Disadvantages of CISC processors
	RISC vs. CISC
	Summary and Facts
	Parallel Processing:
	Flynn's Classification of Computers:
	Arithmetic pipeline:
	Branch Conflicts:
	RISC Pipeline:
	Vector Processing:
	Instruction format of Vector Instruction
	Memory Interleaving:
	Attached Array processor
	SIMD Array Processor Technology
	MULTIPROCESSORS
	Multiprocessor:
	Characteristics of Multiprocessors:
	Interconnection Structures:
	a. Time shared common Bus
	b. Multiport Memory:
	c. Crossbar switch:
	d. Multistage Switching Network:
	e. Hypercube System:
	Inter-processor Arbitration
	Inter processor communication and synchronization:
	Loosely Coupled System
	Interprocess Synchronization
	Mutual Exclusion with Semaphore
	Cache Coherence

