

MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND

SCIENCE

LECTURE NOTES

On

CS501PC: FORMAL LANGUAGES AND AUTOMATA

THEORY

III Year B.Tech. CSE/IT I-Sem

(Jntuh-R18)

CS501PC: FORMAL LANGUAGES AND AUTOMATA THEORY

III Year B.Tech. CSE I-Sem L T P C

3 0 0 3

Course Objectives

1. To provide introduction to some of the central ideas of theoretical computer science from

the perspective of formal languages.

2. To introduce the fundamental concepts of formal languages, grammars and automata theory.

3. Classify machines by their power to recognize languages.

4. Employ finite state machines to solve problems in computing.

5. To understand deterministic and non-deterministic machines.

6. To understand the differences between decidability and undecidability.

Course Outcomes

1. Able to understand the concept of abstract machines and their power to recognize the

languages.

2. Able to employ finite state machines for modeling and solving computing problems.

3. Able to design context free grammars for formal languages.

4. Able to distinguish between decidability and undecidability.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the

Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite

Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language

of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA

to DFA, Moore and Melay machines

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular

Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular

Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications of the

Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages, Decision

Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar,

Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress,

Applications of Context-Free Grammars, Ambiguity in Grammars and Languages. Push

Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of

PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown

Automata. From CFG to PDA, From PDA to CFG

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-

Productions. Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma, Applications

Closure Properties of Context-Free Languages: Closure properties of CFL’s, Decision

Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous

description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An

Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Recursive

languages, Properties of recursive languages, Post's Correspondence Problem, Modified Post

Correspondence problem, Other Undecidable Problems, Counter machines.

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E.

Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.

2. Theory of Computer Science – Automata languages and computation, Mishra and

Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.

3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.

4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage Learning.

5. Introduction to Formal languages Automata Theory and Computation Kamala

Krithivasan, Rama R, Pearson.

Formal Languages and Automata Theory

UNIT-I

CONTENTS

INTRODUCTION TO FINITE AUTOMATA

Structural Representations

Automata & Complexity

The Central Concepts Of Automata Theory-

Alphabets , Strings , Languages, Problems

NON DETERMINISTIC FINITE AUTOMATA:

Formal Definition

An Application

Text Search

Finite automata With Epsilon- Transition

DETERMINISTIC FINITE AUTOMATA :

Definition of DFA

How A DFA Processing Strings

The Language of DFA

Convertion of NFA with Epsilon Transition to NFA without

Epsilon Transition

Convertion of NFA to DFA

Moore and Melay machins

INTRODUCTION TO FINITE AUTOMATA

Automata – What is it?

The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting". An

automaton (Automata in plural) is an abstract self-propelled computing device which follows a

predetermined sequence of operations automatically.

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State

Machine (FSM).

Formal definition of a Finite Automaton

An automaton can be represented by a 5-tuple (Q, ∑, δ, q0, F), where −

• Q is a finite set of states.

• ∑ is a finite set of symbols, called the alphabet of the automaton.

• δ is the transition function.

• q0 is the initial state from where any input is processed (q0 ∈ Q).

• F is a set of final state/states of Q (F ⊆ Q).

Structural Representations

The purpose of a logical framework such as LF is to provide a language for defining logical

systems suitable for use in a logic-independent proof development environment. All inferential activity in

an object logic (in particular, proof search) is to be conducted in the logical framework via the

representation of that logic in the framework. An important tool for controlling search in an object logic,

the need for which is motivated by the difficulty of reasoning about large and complex systems, is the use

of structured theory presentations. In this paper a rudimentary language of structured theory presentations

is presented, and the use of this structure in proof search for an arbitrary object logic is explored. The

behaviour of structured theory presentations under representation in a logical framework is studied,

focusing on the problem of “lifting” presentations from the object logic to the metalogic of the framework.

The topic of imposing structure on logic presentations, so that logical systems may themselves be defined

in a modular fashion, is also briefly consider.

Automata & Complexity

Automata Theory

● Finite automata: Computers with no memory

Motivation: Numbers, names, in Prog. Languages

Example: x = -0.0565

● Context-free grammars: Memory = stack

Motivation: Syntax, grammar of Prog. Languages

Example: if (...) then (…) else (…)

Computability Theory

● Turing Machines: “Compute until the sun dies”

● Motivation: What problems can be solved at all?

● Example: Given a program, does it have a bug?

We will prove impossible to determine!

Complexity Theory

● P, NP: Model your laptop

● Motivation: What problems can be solved fast?

● Example: Given a formula with 1000 variables like

(X OR Y) AND (X OR NOT Z) AND (Z OR Y) …

Is it satisfiable or not?

Does it take 1 thousand years or 1 second to know?

Recap

● Automata theory: Finite automata, grammars

● Computability Theory: Turing Machines

● Complexity Theory: P, NP

● Theme: Computation has many guises:

Automata, grammar, Turing Machine, formula ...

The Central Concepts Of Automata Theory-

Alphabets , Strings , Languages, Problems

Alphabet

• Definition − An alphabet is any finite set of symbols.

• Example − ∑ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and ‘d’ are symbols.

• An alphabet is a finite, non-empty set of symbols We use the symbol ∑ (sigma) to denote an

alphabet Examples: Binary: ∑ = {0,1} All lower case letters: ∑ = {a,b,c,..z}

• Alphanumeric: ∑ = {a-z, A-Z, 0-9}

String

• Definition − A string is a finite sequence of symbols taken from ∑.

• Example − ‘cabcad’ is a valid string on the alphabet set ∑ = {a, b, c, d}

A string or word is a finite sequence of symbols chosen from ∑ (epsilon)Empty string is donated by λ

(lambda).

Length of a String

It is the number of meaningful) present in asymbols/alphabets (non- string.

Length of a string w, denoted by “|w|”.

E.g., if x = 010100 then |x| = 6 then|x| = ? 00 1 0 – If x = 01 If |W|= 0, it is called an empty string

(Denoted by λ or ε) xy = concatenation of two strings x and y

Powers of an alphabet

Let ∑ be an alphabet. ∑k = the set of all strings of length k

∑* = ∑0 U ∑1 U ∑2 U … ∑+ = ∑1 U ∑2 U ∑3 U …

• Definition − It is the number of symbols present in a string. (Denoted by |S|).

• Examples −

o If S = ‘cabcad’, |S|= 6

o If |S|= 0, it is called an empty string (Denoted by λ or ε)

Kleene Closure / Star

• Definition − The Kleene star, ∑*, is a unary operator on a set of symbols or strings, ∑, that gives

the infinite set of all possible strings of all possible lengths over ∑ including λ.

• Representation − ∑* = ∑0 𝖴 ∑1 𝖴 ∑2 𝖴……. where ∑p is the set of all possible strings of length

p.

• Example − If ∑ = {a, b}, ∑* = {λ, a, b, aa, ab, ba, bb,… }

Kleene Closure Plus

• Definition − The set ∑+ is the infinite set of all possible strings of all possible lengths over ∑

excluding λ.

• Representation − ∑+ = ∑1 𝖴 ∑2 𝖴 ∑3 𝖴…….

∑+ = ∑* − { λ }

• Example − If ∑ = { a, b } , ∑+ = { a, b, aa, ab, ba, bb,… }

Language

• Definition − A language is a subset of ∑* for some alphabet ∑. It can be finite or infinite.

Example –

1. If the language takes all possible strings of length 2 over ∑ = {a, b}, then L = { ab, bb, ba, bb}

2. Let L be the language of all strings consisting of n 0’s followed by n 1’s: ,01,0011,000111,…}L = {

2. Let L be the language of all strings of with equal number of 0’s and 1’s:

,01,10,0011,1100,0101,1010,1001,…}L = { 3. If the language takes all possible strings of length 2 over

∑ = {a, b}, then L = { ab, bb, ba, bb} Ø denotes the Empty language }; Is L=Ø?•

The Membership Problem ∑*and a language L over ∑,Given a string w L.decide whether or not w

Example: Let w = 100011 the language of strings with equalQ) Is w number of 0s and 1s?

Operations on languages: –Union: L𝖴M= {w| w ∈ Lor w∈M}.

–Intersection: L∩M={w |w ∈ L and w∈ M}.

–Subtraction:L−M={w|w∈Landw /∈M}.

–Complementation:L={w|w∈Σ∗−L}.

–Concatenation:LM={w|w∈Landx/∈M}.

Note: if L and M are over different alphabets, say Σ1 and Σ2, then the resulting

language can be taken to be over Σ1𝖴Σ2. In this course, it will not happen.

Notation: we will write LM instead of L ·M .

Also, concatenation is associative (i.e.L(MN) = (LM)N), so we drop the brackets and write LMN.

Note: for any language L ,∅ L=L∅=∅.

And also {ε}L=L{ε}=L.

– Lk = LL L| {z }k times for k > 0; L0 = {"}.

Exercise: Prove that for any language L, and any m _ 0, n _ 0, LmLn = Lm+n.

– Kleene closure (or star closure): L_ = L0 [L1 [L2 [. . . .

– Reverse: LR = {wR|w 2 L}.

NON DETERMINISTIC FINITE AUTOMATA:

Finite Automaton can be classified into two types −

• Deterministic Finite Automaton (DFA)

• Non-deterministic Finite Automaton (NDFA / NFA)

Non deterministic finite automata(NFA)

In NDFA, for a particular input symbol, the machine can move to any combination of the states in the

machine. In other words, the exact state to which the machine moves cannot be determined. Hence, it is

called Non-deterministic Automaton. As it has finite number of states, the machine is called Non-

deterministic Finite Machine or Non-deterministic Finite Automaton.

An NDFA is represented by digraphs called state diagram.

• The vertices represent the states.

• The arcs labeled with an input alphabet show the transitions.

• The initial state is denoted by an empty single incoming arc.

• The final state is indicated by double circles.

Formal Definition of an NDFA

An NDFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where −

• Q is a finite set of states.

• ∑ is a finite set of symbols called the alphabets.

• δ is the transition function where δ: Q × ∑ → 2Q

(Here the power set of Q (2Q) has been taken because in case of NDFA, from a state, transition can

occur to any combination of Q states)

• q0 is the initial state from where any input is processed (q0 ∈ Q).

• F is a set of final state/states of Q (F ⊆ Q).

Graphical Representation of an NDFA: (same as DFA)

• An NFA is a five-tuple: M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) -> 2Q -2Q is the power set of Q, the

set of all subsets of Q δ(q,s) -The set of all states p such

that there is a transition

l

abeled s from q to p δ(q,s) is a

function from Q x S to 2Q (but

not to Q)

• Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is
accepted by M iff δ({q0}, w) contains at least one state in F.

• Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language
accepted by M is the set: L(M) = {w | w is in Σ* and
δ({q0},w) contains at least one state in F}

• Another equivalent definition:
L(M) = {w | w is in Σ* and w is accepted by M}

Example

An Application - Text Search

Automata theory is the study of abstract machines and automata. It also includes the computational

problems that can be solved using them . In the theory of computation,the simpler abstract machine is

finite automata. The otherimportant abstract machines are 1. Pushdown Automata2.Turing Machine. The

finite automata proposed to model brain function of the human. The simplest example for finite automata

is the switch with two states "on" and "off" [1].The Finite Automata is the five tuples combination focusing

on states and transition through input characters. Infigure 1 the ending state is ON, starting state is OFF

and collection of states are OFF and ON. It is having only a single input PUSH for making the transition

from the state OFF to ON, then ON to OFF. The switch is the simplest practical application of finite

automata.

Acceptors, Classifiers, and Transducers

Acceptor (Recognizer)

An automaton that computes a Boolean function is called an acceptor. All the states of an acceptor is

either accepting or rejecting the inputs given to it.

Classifier

A classifier has more than two final states and it gives a single output when it terminates.

Transducer

An automaton that produces outputs based on current input and/or previous state is called a transducer.

Transducers can be of two types −

• Mealy Machine − The output depends both on the current state and the current input.

• Moore Machine − The output depends only on the current state.

Finite automata With Epsilon- Transition

Allow to be a label on arcs.

Nothing else changes: acceptance of w is still the

existence of a path from the start state to an

accepting state with label w.

✦ But can appear on arcs, and means the

empty string (i.e., no visible contribution to

w).

Example

001 is accepted by the path q; s; r; q; r; s, with

label 0 01 = 001.

DETERMINISTIC FINITE AUTOMATA :

In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is

called Deterministic Automaton. As it has a finite number of states, the machine is called Deterministic

Finite Machine or Deterministic Finite Automaton.

Formal Definition of a DFA

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where −

• Q is a finite set of states.

• ∑ is a finite set of symbols called the alphabet.

• δ is the transition function where δ: Q × ∑ → Q

• q0 is the initial state from where any input is processed (q0 ∈ Q).

• F is a set of final state/states of Q (F ⊆ Q).

Graphical Representation of a DFA

A DFA is represented by digraphs called state diagram.

• The vertices represent the states.

• The arcs labeled with an input alphabet show the transitions.

• The initial state is denoted by an empty single incoming arc.

• The final state is indicated by double circles.

Example

Let a deterministic finite automaton be →

• Q = {a, b, c},

• ∑ = {0, 1},

• q0 = {a},

• F = {c}, and

Transition function δ as shown by the following table –

Present state next state for input 0 next state for input 1

A

A

B

B

C

A

C

B

C

DFA vs NDFA

The following table lists the differences between DFA and NDFA.

DFA NDFA

The transition from a state is to a single particular

next state for each input symbol. Hence it is called

deterministic.

The transition from a state can be to multiple next

states for each input symbol. Hence it is called non-

deterministic.

Empty string transitions are not seen in DFA. NDFA permits empty string transitions.

Backtracking is allowed in DFA In NDFA, backtracking is not always possible.

Requires more space. Requires less space.

A string is accepted by a DFA, if it transits to a

final state.

A string is accepted by a NDFA, if at least one of

all possible transitions ends in a final state.

How A DFA Processing Strings

Acceptors, Classifiers, and Transducers

Acceptor (Recognizer)

An automaton that computes a Boolean function is called an acceptor. All the states of an acceptor is

either accepting or rejecting the inputs given to it.

Classifier

A classifier has more than two final states and it gives a single output when it terminates.

Transducer

An automaton that produces outputs based on current input and/or previous state is called a transducer.

Transducers can be of two types −

• Mealy Machine − The output depends both on the current state and the current input.

• Moore Machine − The output depends only on the current state.

Acceptability by DFA and NDFA

A string is accepted by a DFA/NDFA iff the DFA/NDFA starting at the initial state ends in an accepting

state (any of the final states) after reading the string wholly.

A string S is accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff

δ*(q0, S) ∈ F

The language L accepted by DFA/NDFA is

{S | S ∈ ∑* and δ*(q0, S) ∈ F}

A string S′ is not accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff

δ*(q0, S′) ∉ F

The language L′ not accepted by DFA/NDFA (Complement of accepted language L) is

{S | S ∈ ∑* and δ*(q0, S) ∉ F}

Example

Let us consider the DFA shown in Figure 1.3. From the DFA, the acceptable strings can be derived.

Strings accepted by the above DFA: {0, 00, 11, 010, 101, }

Strings not accepted by the above DFA: {1, 011, 111, }

The Language of DFA

• A DFA is a five-tuple: M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to Q

δ: (Q x Σ) –> Q δ is defined for any q

in Q and s in Σ, and δ(q,s) = q’ is equal to another

state q’ in Q.

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q.

Formal Language Automata Theory MRITS

• Let M = (Q, Σ, δ, q , F) be a DFA and let w be in Σ*. Then w is accepted
by M iff

0

δ(q ,w) = p for some state p in F.

• Let M = (Q, Σ, δ, q , F) be a DFA. Then the language accepted by M is the set:
0

L(M) = {w | w is in Σ* and δ(q ,w) is in F}

• Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

• Let L be a language. Then L is a regular language iff

there exists a DFA M such that L = L(M).

• Notes:
– A DFA M = (Q, Σ, δ,q0,F) partitions the set

Σ* into two sets: L(M) and Σ* - L(M).

– If L = L(M) then L is a subset of L(M) and L(M) is a subset of L.

– Similarly, if L(M1) = L(M2) then L(M1) is a subset of
L(M2) and L(M2) is a subset of L(M1).

Formal Language Automata Theory MRITS

Formal Language Automata Theory MRITS

Formal Language Automata Theory MRITS

Convertion of NFA with Epsilon Transition to NFA without

Epsilon Transition

Eliminating ε Transitions

NFA with ε can be converted to NFA without ε, and this NFA without ε can be converted to

DFA. To do this, we will use a method, which can remove all the ε transition from given

NFA. The method will be:

1. Find out all the ε transitions from each state from Q. That will be called as ε-

closure{q1} where qi ∈ Q.

2. Then δ' transitions can be obtained. The δ' transitions mean a ε-closure on δ moves.

3. Repeat Step-2 for each input symbol and each state of given NFA.

4. Using the resultant states, the transition table for equivalent NFA without ε can be

built.

Example:

Convert the following NFA with ε to NFA without ε.

Solutions: We will first obtain ε-closures of q0, q1 and q2 as follows:

ε-closure(q0) = {q0}

ε-closure(q1) = {q1, q2}

ε-closure(q2) = {q2}

Now the δ' transition on each input symbol is obtained as:

δ'(q0, a) = ε-closure(δ(δ^(q0, ε),a))

= ε-closure(δ(ε-closure(q0),a))

= ε-closure(δ(q0, a))

Formal Language Automata Theory MRITS

= ε-closure(q1) = {q1, q2}

δ'(q0, b) = ε-closure(δ(δ^(q0, ε),b))

= ε-closure(δ(ε-closure(q0),b))

= ε-closure(δ(q0, b))

= Ф

Now the δ' transition on q1 is obtained as:

δ'(q1, a) = ε-closure(δ(δ^(q1, ε),a))

= ε-closure(δ(ε-closure(q1),a))

= ε-closure(δ(q1, q2), a)

= ε-closure(δ(q1, a) 𝖴 δ(q2, a))

= ε-closure(Ф 𝖴 Ф)

= Ф

δ'(q1, b) = ε-closure(δ(δ^(q1, ε),b))

= ε-closure(δ(ε-closure(q1),b))

= ε-closure(δ(q1, q2), b)

= ε-closure(δ(q1, b) 𝖴 δ(q2, b))

= ε-closure(Ф 𝖴 q2)

= {q2}

The δ' transition on q2 is obtained as:

δ'(q2, a) = ε-closure(δ(δ^(q2, ε),a))

= ε-closure(δ(ε-closure(q2),a))

= ε-closure(δ(q2, a))

= ε-closure(Ф)

= Ф

δ'(q2, b) = ε-closure(δ(δ^(q2, ε),b))

= ε-closure(δ(ε-closure(q2),b))

= ε-closure(δ(q2, b))

= ε-closure(q2)

= {q2}

Now we will summarize all the computed δ' transitions:

δ'(q0, a) = {q0, q1}

δ'(q0, b) = Ф

δ'(q1, a) = Ф

Formal Language Automata Theory MRITS

δ'(q1, b) = {q2}

δ'(q2, a) = Ф

δ'(q2, b) = {q2}

The transition table can be:

States a b

→q0

{q1,

q2}

Ф

*q1

Ф

{q2}

*q2

Ф

{q2}

State q1 and q2 become the final state as ε-closure of q1 and q2 contain the final state

q2. The NFA can be shown by the following transition diagram:

Formal Language Automata Theory MRITS

Conversion from NFA to DFA

In this section, we will discuss the method of converting NFA to its equivalent DFA. In NFA,

when a specific input is given to the current state, the machine goes to multiple states. It

can have zero, one or more than one move on a given input symbol. On the other hand, in

DFA, when a specific input is given to the current state, the machine goes to only one state.

DFA has only one move on a given input symbol.

Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the language L(M). There should be

equivalent DFA denoted by M' = (Q', ∑', q0', δ', F') such that L(M) = L(M').

Steps for converting NFA to DFA:

Step 1: Initially Q' = ϕ

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state.

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is

not in Q', then add it to Q'.

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA)

Example 1:

Convert the NFA to DFA.

Solution: For the given transition diagram we will first construct the transition table.

State 0 1

→q0

q0

q1

Formal Language Automata Theory MRITS

q1

{q1,

q2}

q1

*q2

q2

{q1,

q2}

Now we will obtain δ' transition for state q0.

δ'([q0], 0) = [q0]

δ'([q0], 1) = [q1]

The δ' transition for state q1 is obtained as:

δ'([q1], 0) = [q1, q2] (new state generated)

δ'([q1], 1) = [q1]

The δ' transition for state q2 is obtained as:

δ'([q2], 0) = [q2]

δ'([q2], 1) = [q1, q2]

Now we will obtain δ' transition on [q1, q2].

δ'([q1, q2], 0) = δ(q1, 0) 𝖴 δ(q2, 0)

= {q1, q2} 𝖴 {q2}

= [q1, q2]

δ'([q1, q2], 1) = δ(q1, 1) 𝖴 δ(q2, 1)

= {q1} 𝖴 {q1, q2}

= {q1, q2}

= [q1, q2]

The state [q1, q2] is the final state as well because it contains a final state q2. The

transition table for the constructed DFA will be:

State 0 1

→[q0]

[q0]

[q1]

Formal Language Automata Theory MRITS

[q1]

[q1,

q2]

[q1]

*[q2]

[q2]

[q1,

q2]

*[q1,

q2]

[q1,

q2]

[q1,

q2]

The Transition diagram will be:

The state q2 can be eliminated because q2 is an unreachable state.

Example 2:

Convert the given NFA to DFA.

Formal Language Automata Theory MRITS

Solution: For the given transition diagram we will first construct the transition table.

Now we will obtain δ' transition for state q0.

δ'([q0], 0) = {q0, q1}

= [q0, q1] (new state generated)

δ'([q0], 1) = {q1} = [q1]

The δ' transition for state q1 is obtained as:

δ'([q1], 0) = ϕ

δ'([q1], 1) = [q0, q1]

Now we will obtain δ' transition on [q0, q1].

δ'([q0, q1], 0) = δ(q0, 0) 𝖴 δ(q1, 0)

= {q0, q1} 𝖴 ϕ

= {q0, q1}

= [q0, q1]

Similarly,

δ'([q0, q1], 1) = δ(q0, 1) 𝖴 δ(q1, 1)

= {q1} 𝖴 {q0, q1}

= {q0, q1}

= [q0, q1]

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state becomes

a final state. Hence in the DFA, final states are [q1] and [q0, q1]. Therefore set of final

states F = {[q1], [q0, q1]}.

The transition table for the constructed DFA will be:

State 0 1

→q0

{q0,

q1}

{q1}

*q1

ϕ

{q0,

q1}

Formal Language Automata Theory MRITS

State 0 1

→[q0]

[q0,

q1]

[q1]

*[q1]

ϕ

[q0,

q1]

*[q0,

q1]

[q0,

q1]

[q0,

q1]

The Transition diagram will be:

Even we can change the name of the states of DFA.

Suppose

A = [q0]

B = [q1]

C = [q0, q1]

With these new names the DFA will be as follows:

Formal Language Automata Theory MRITS

Conversion from NFA with ε to DFA

Non-deterministic finite automata(NFA) is a finite automata where for some cases when a

specific input is given to the current state, the machine goes to multiple states or more than

1 states. It can contain ε move. It can be represented as M = { Q, ∑, δ, q0, F}.

Where

Q: finite set of states

∑: finite set of the input symbol

q0: initial state

F: final state

δ: Transition function

NFA with ∈ move: If any FA contains ε transaction or move, the finite automata is called

NFA with ∈ move.

ε-closure: ε-closure for a given state A means a set of states which can be reached from

the state A with only ε(null) move including the state A itself.

Steps for converting NFA with ε to DFA:

Step 1: We will take the ε-closure for the starting state of NFA as a starting state of DFA.

Step 2: Find the states for each input symbol that can be traversed from the present. That

means the union of transition value and their closures for each state of NFA present in the

current state of DFA.

Step 3: If we found a new state, take it as current state and repeat step 2.

Step 4: Repeat Step 2 and Step 3 until there is no new state present in the transition table

of DFA.

Formal Language Automata Theory MRITS

Step 5: Mark the states of DFA as a final state which contains the final state of NFA.

Example 1:

Convert the NFA with ε into its equivalent DFA.

Solution:

Let us obtain ε-closure of each state.

ε-closure {q0} = {q0, q1, q2}

ε-closure {q1} = {q1}

ε-closure {q2} = {q2}

ε-closure {q3} = {q3}

ε-closure {q4} = {q4}

Now, let ε-closure {q0} = {q0, q1, q2} be state A.

Hence

δ'(A, 0) = ε-closure {δ((q0, q1, q2), 0) }

= ε-closure {δ(q0, 0) 𝖴 δ(q1, 0) 𝖴 δ(q2, 0) }

= ε-closure {q3}

= {q3} call it as state B.

δ'(A, 1) = ε-closure {δ((q0, q1, q2), 1) }

= ε-closure {δ((q0, 1) 𝖴 δ(q1, 1) 𝖴 δ(q2, 1) }

= ε-closure {q3}

= {q3} = B.

The partial DFA will be

Formal Language Automata Theory MRITS

Now,

δ'(B, 0) = ε-closure {δ(q3, 0) }

= ϕ

δ'(B, 1) = ε-closure {δ(q3, 1) }

= ε-closure {q4}

= {q4} i.e. state C

For state C:

δ'(C, 0) = ε-closure {δ(q4, 0) }

= ϕ

δ'(C, 1) = ε-closure {δ(q4, 1) }

= ϕ

The DFA will be,

Example 2:

Convert the given NFA into its equivalent DFA.

Formal Language Automata Theory MRITS

Solution: Let us obtain the ε-closure of each state.

ε-closure(q0) = {q0, q1, q2}

ε-closure(q1) = {q1, q2}

ε-closure(q2) = {q2}

Now we will obtain δ' transition. Let ε-closure(q0) = {q0, q1, q2} call it as state A.

δ'(A, 0) = ε-closure{δ((q0, q1, q2), 0)}

= ε-closure{δ(q0, 0) 𝖴 δ(q1, 0) 𝖴 δ(q2, 0)}

= ε-closure{q0}

= {q0, q1, q2}

δ'(A, 1) = ε-closure{δ((q0, q1, q2), 1)}

= ε-closure{δ(q0, 1) 𝖴 δ(q1, 1) 𝖴 δ(q2, 1)}

= ε-closure{q1}

= {q1, q2} call it as state B

δ'(A, 2) = ε-closure{δ((q0, q1, q2), 2)}

= ε-closure{δ(q0, 2) 𝖴 δ(q1, 2) 𝖴 δ(q2, 2)}

= ε-closure{q2}

= {q2} call it state C

Thus we have obtained

δ'(A, 0) = A

δ'(A, 1) = B

δ'(A, 2) = C

The partial DFA will be:

Formal Language Automata Theory MRITS

Now we will find the transitions on states B and C for each input.

Hence

δ'(B, 0) = ε-closure{δ((q1, q2), 0)}

= ε-closure{δ(q1, 0) 𝖴 δ(q2, 0)}

= ε-closure{ϕ}

= ϕ

δ'(B, 1) = ε-closure{δ((q1, q2), 1)}

= ε-closure{δ(q1, 1) 𝖴 δ(q2, 1)}

= ε-closure{q1}

= {q1, q2} i.e. state B itself

δ'(B, 2) = ε-closure{δ((q1, q2), 2)}

= ε-closure{δ(q1, 2) 𝖴 δ(q2, 2)}

= ε-closure{q2}

= {q2} i.e. state C itself

Thus we have obtained

δ'(B, 0) = ϕ

δ'(B, 1) = B

δ'(B, 2) = C

The partial transition diagram will be

Formal Language Automata Theory MRITS

Now we will obtain transitions for C:

δ'(C, 0) = ε-closure{δ(q2, 0)}

= ε-closure{ϕ}

= ϕ

δ'(C, 1) = ε-closure{δ(q2, 1)}

= ε-closure{ϕ}

= ϕ

δ'(C, 2) = ε-closure{δ(q2, 2)}

= {q2}

Hence the DFA is

As A = {q0, q1, q2} in which final state q2 lies hence A is final state. B = {q1, q2} in which

the state q2 lies hence B is also final state. C = {q2}, the state q2 lies hence C is also a

final state.

Formal Language Automata Theory MRITS

FINITE AUTOMATA WITH OUTPUT

Moore and Melay machins

Moore Machine

Moore machine is a finite state machine in which the next state is decided by the current

state and current input symbol. The output symbol at a given time depends only on the

present state of the machine. Moore machine can be described by 6 tuples (Q, q0, ∑, O, δ,

λ) where,

Q: finite set of states

q0: initial state of machine

∑: finite set of input symbols

O: output alphabet

δ: transition function where Q × ∑ → Q

λ: output function where Q → O

Example 1:

The state diagram for Moore Machine is

Transition table for Moore Machine is:

Formal Language Automata Theory MRITS

In the above Moore machine, the output is represented with each input state separated by

/. The output length for a Moore machine is greater than input by 1.

Input: 010

Transition: δ (q0,0) => δ(q1,1) => δ(q1,0) => q2

Output: 1110(1 for q0, 1 for q1, again 1 for q1, 0 for q2)

Example 2:

Design a Moore machine to generate 1's complement of a given binary number.

Solution: To generate 1's complement of a given binary number the simple logic is that if

the input is 0 then the output will be 1 and if the input is 1 then the output will be 0. That

means there are three states. One state is start state. The second state is for taking 0's as

input and produces output as 1. The third state is for taking 1's as input and producing

output as 0.

Hence the Moore machine will be,

Formal Language Automata Theory MRITS

For instance, take one binary number 1011 then

Input

1

0

1

1

State

q0

q2

q1

q2

q2

Output

0

0

1

0

0

Thus we get 00100 as 1's complement of 1011, we can neglect the initial 0 and the output

which we get is 0100 which is 1's complement of 1011. The transaction table is as follows:

Thus Moore machine M = (Q, q0, ∑, O, δ, λ); where Q = {q0, q1, q2}, ∑ = {0, 1}, O = {0,

1}. the transition table shows the δ and λ functions.

Mealy Machine

A Mealy machine is a machine in which output symbol depends upon the present input

symbol and present state of the machine. In the Mealy machine, the output is represented

with each input symbol for each state separated by /. The Mealy machine can be described

by 6 tuples (Q, q0, ∑, O, δ, λ') where

Q: finite set of states

q0: initial state of machine

∑: finite set of input alphabet

O: output alphabet

δ: transition function where Q × ∑ → Q

λ': output function where Q × ∑ →O

Formal Language Automata Theory MRITS

Example 1:

Design a Mealy machine for a binary input sequence such that if it has a substring 101, the

machine output A, if the input has substring 110, it outputs B otherwise it outputs C.

Solution: For designing such a machine, we will check two conditions, and those are 101

and 110. If we get 101, the output will be A. If we recognize 110, the output will be B. For

other strings the output will be C.

The partial diagram will be:

Now we will insert the possibilities of 0's and 1's for each state. Thus the Mealy machine

becomes:

Formal Language Automata Theory MRITS

Example 2:

Design a mealy machine that scans sequence of input of 0 and 1 and generates output 'A' if

the input string terminates in 00, output 'B' if the string terminates in 11, and output 'C'

otherwise.

Solution: The mealy machine will be:

Conversion from Mealy machine to Moore
Machine

In Moore machine, the output is associated with every state, and in Mealy machine, the

output is given along the edge with input symbol. To convert Moore machine to Mealy

machine, state output symbols are distributed to input symbol paths. But while converting

the Mealy machine to Moore machine, we will create a separate state for every new output

symbol and according to incoming and outgoing edges are distributed.

The following steps are used for converting Mealy machine to the Moore machine:

Step 1: For each state(Qi), calculate the number of different outputs that are available in

the transition table of the Mealy machine.

Step 2: Copy state Qi, if all the outputs of Qi are the same. Break qi into n states as Qin, if

it has n distinct outputs where n = 0, 1, 2....

Step 3: If the output of initial state is 0, insert a new initial state at the starting which gives

1 output.

Formal Language Automata Theory MRITS

Example 1:

Convert the following Mealy machine into equivalent Moore machine.

Solution:

Transition table for above Mealy machine is as follows:

o For state q1, there is only one incident edge with output 0. So, we don't need to split

this state in Moore machine.

o For state q2, there is 2 incident edge with output 0 and 1. So, we will split this state

into two states q20(state with output 0) and q21(with output 1).

o For state q3, there is 2 incident edge with output 0 and 1. So, we will split this state

into two states q30(state with output 0) and q31(state with output 1).

o For state q4, there is only one incident edge with output 0. So, we don't need to split

this state in Moore machine.

Formal Language Automata Theory MRITS

Transition table for Moore machine will be:

Transition diagram for Moore machine will be:

Formal Language Automata Theory MRITS

Example 2:

Convert the following Mealy machine into equivalent Moore machine.

Solution:

Transition table for above Mealy machine is as follows:

Formal Language Automata Theory MRITS

The state q1 has only one output. The state q2 and q3 have both output 0 and 1. So we will

create two states for these states. For q2, two states will be q20(with output 0) and

q21(with output 1). Similarly, for q3 two states will be q30(with output 0) and q31(with

output 1).

Transition table for Moore machine will be:

Transition diagram for Moore machine will be:

Formal Language Automata Theory MRITS

Conversion from Moore machine to Mealy
Machine

In the Moore machine, the output is associated with every state, and in the mealy machine,

the output is given along the edge with input symbol. The equivalence of the Moore machine

and Mealy machine means both the machines generate the same output string for same

input string.

We cannot directly convert Moore machine to its equivalent Mealy machine because the

length of the Moore machine is one longer than the Mealy machine for the given input. To

convert Moore machine to Mealy machine, state output symbols are distributed into input

symbol paths. We are going to use the following method to convert the Moore machine to

Mealy machine.

Method for conversion of Moore machine to Mealy
machine

Let M = (Q, ∑, δ, λ, q0) be a Moore machine. The equivalent Mealy machine can be

represented by M' = (Q, ∑, δ, λ', q0). The output function λ' can be obtained as:

λ' (q, a) = λ(δ(q, a))

Example 1:

Convert the following Moore machine into its equivalent Mealy machine.

Formal Language Automata Theory MRITS

Solution:

The transition table of given Moore machine is as follows:

Q A b Output(λ)

q0

q0

q1

0

q1

q0

q1

1

The equivalent Mealy machine can be obtained as follows:

λ' (q0, a) = λ(δ(q0, a))

= λ(q0)

= 0

λ' (q0, b) = λ(δ(q0, b))

= λ(q1)

= 1

The λ for state q1 is as follows:

λ' (q1, a) = λ(δ(q1, a))

= λ(q0)

= 0

λ' (q1, b) = λ(δ(q1, b))

= λ(q1)

= 1

Hence the transition table for the Mealy machine can be drawn as follows:

Formal Language Automata Theory MRITS

The equivalent Mealy machine will be,

Note: The length of output sequence is 'n+1' in Moore machine and is 'n' in the Mealy

machine.

Example 2:

Convert the given Moore machine into its equivalent Mealy machine.

Solution:

The transition table of given Moore machine is as follows:

Formal Language Automata Theory MRITS

Q a b Output(λ)

q0

q1

q0

0

q1

q1

q2

0

q2

q1

q0

1

The equivalent Mealy machine can be obtained as follows:

λ' (q0, a) = λ(δ(q0, a))

= λ(q1)

= 0

λ' (q0, b) = λ(δ(q0, b))

= λ(q0)

= 0

The λ for state q1 is as follows:

λ' (q1, a) = λ(δ(q1, a))

= λ(q1)

= 0

λ' (q1, b) = λ(δ(q1, b))

= λ(q2)

= 1

The λ for state q2 is as follows:

λ' (q2, a) = λ(δ(q2, a))

= λ(q1)

= 0

λ' (q2, b) = λ(δ(q2, b))

= λ(q0)

= 0

Formal Language Automata Theory MRITS

Hence the transition table for the Mealy machine can be drawn as follows:

The equivalent Mealy machine will be,

Formal Language Automata and Automata Theory MRITS

MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND

SCIENCE

LECTURE NOTES

On

CS501PC: FORMAL LANGUAGES AND

AUTOMATA THEORY (UNIT-II)

III Year B.Tech. CSE/IT I-Sem

(Jntuh-R18)

Formal Language Automata and Automata Theory MRITS

CS501PC: FORMAL LANGUAGES AND AUTOMATA

THEORY

III Year B.Tech. CSE I-Sem L T P C

3 0 0

Course Objectives

1. To provide introduction to some of the central ideas of theoretical computer

science from the perspective of formal languages.

2. To introduce the fundamental concepts of formal languages, grammars and automata
theory.

3. Classify machines by their power to recognize languages.

4. Employ finite state machines to solve problems in computing.

5. To understand deterministic and non-deterministic machines.

6. To understand the differences between decidability and undecidability.

Course Outcomes

1. Able to understand the concept of abstract machines and their power to recognize

the languages.

2. Able to employ finite state machines for modeling and solving computing problems.

3. Able to design context free grammars for formal languages.

4. Able to distinguish between decidability and undecidability.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity,

the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search,

Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The

language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions.

Conversion of NFA to DFA, Moore and Melay machines

Formal Language Automata and Automata Theory MRITS

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular

Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to

Regular Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications

of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages,

Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a

Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential

Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in

Grammars and Languages.

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA,

Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack,

Deterministic Pushdown Automata. From CFG to PDA, From PDA to CFG

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-

Productions. Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma,

Applications

Closure Properties of Context-Free Languages: Closure properties of CFL’s, Decision

Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous

description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An

Undecidable Problem That is RE, Undecidable Problems about Turing Machines,

Recursive languages, Properties of recursive languages, Post's Correspondence Problem,

Modified Post Correspondence problem, Other Undecidable Problems, Counter machines.

Formal Language Automata and Automata Theory MRITS

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John

E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.

2. Theory of Computer Science – Automata languages and computation, Mishra and

Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.

3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge

University Press.

4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage

Learning.

5. Introduction to Formal languages Automata Theory and Computation Kamala

Krithivasan, Rama R, Pearson.

Formal Language Automata and Automata Theory MRITS

UNIT - II
CONTENTS

Regular Expressions:

Finite Automata and Regular Expressions

Applications of Regular Expressions

Algebraic Laws for Regular Expressions,\

Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages,

Statement of the pumping lemma,

Applications of the Pumping Lemma.

Closure Properties of Regular Languages:

Closure properties of Regular languages,

Decision Properties of Regular Languages,

Equivalence and Minimization of Automata.

Formal Language Automata and Automata Theory MRITS

Regular Expressions:

Just as finite automata are used to recognize patterns of strings, regular expressions are

used to generate patterns of strings. A regular expression is an algebraic formula whose value

is a pattern consisting of a set of strings, called the language of the expression.

1.A Regular Language is used to specify a Language and it does so preciously

2. Regular expressions are very intuitive.

3. Regular expressions are very useful in a variety of contexts.

4. Given a regular expression, an NFA-ε can be constructed from it automatically.

5.Thus, so can an NFA, a DFA, and a corresponding program, all automatically!

Operands in a regular expression can be:

• characters from the alphabet over which the regular expression is defined.

• variables whose values are any pattern defined by a regular expression.

• epsilon which denotes the empty string containing no characters.

• null which denotes the empty set of strings.

• Let Σ be an alphabet. The regular expressions over Σ are:

– Ø Represents the empty set { }
– ε Represents the set {ε}
– a Represents the set {a}, for any symbol a in ΣOperators used in

regular expressions include:

• Union: If R1 and R2 are regular expressions, then R1 | R2 (also written as R1 U R2 or R1 + R2)

is also a regular expression.

L(R1|R2) = L(R1) U L(R2).

• Concatenation: If R1 and R2 are regular expressions, then R1R2 (also written as R1.R2) is also a

regular expression.

L(R1R2) = L(R1) concatenated with L(R2).

• Kleene closure: If R1 is a regular expression, then R1* (the Kleene closure of R1) is also a

regular expression.

L(R1*) = epsilon U L(R1) U L(R1R1) U L(R1R1R1) U ...

Closure has the highest precedence, followed by concatenation, followed by union.

Formal Language Automata and Automata Theory MRITS

Let r and s be regular expressions that represent the sets R and S, respectively.

– r+s Represents the set R U S (precedence 3)
– rs Represents the set RS (precedence 2)
– r* Represents the set R* (highest precedence)
– (r) Represents the set R (not an op, provides

precedence)

If r is a regular expression, then L(r) is used to denote the corresponding language.

Examples: Let Σ = {0, 1}
(0 + 1)* All strings of 0’s and 1’s

0(0 + 1)* All strings of 0’s and 1’s, beginning with a 0

(0 + 1)*1 All strings of 0’s and 1’s, ending with a 1

(0 + 1)*0(0 + 1)* All strings of 0’s and 1’s containing at least one 0

(0 + 1)*0(0 + 1)*0(0 + 1)* All strings of 0’s and 1’s containing at least two 0’s

(0 + 1)*01*01* All strings of 0’s and 1’s containing at least two 0’s

(1 + 01*0)* All strings of 0’s and 1’s containing an even number of 0’s

1*(01*01*)* All strings of 0’s and 1’s containing an even number of 0’s

(1*01*0)*1* All strings of 0’s and 1’s containing an even number of 0’s

Identities:

1. Øu = uØ = Ø Multiply by 0

2. εu = uε = u Multiply by 1

3. Ø* = ε

4. ε* = ε

5. u+v = v+u

6. u + Ø = u

6. u + u = u 8.

7. u* = (u*)*

9. u(v+w) = uv+uw

10. (u+v)w = uw+vw

11. (uv)*u = u(vu)

12. (u+v)* = (u*+v)*

= u*(u+v)*

Formal Language Automata and Automata Theory MRITS

= (u+vu*)*

= (u*v*)*

= u*(vu*)*

= (u*v)*u*

Finite Automata and Regular Expressions

If L=L(A) for some DFA, then there is a regular expression R such that L=L(R)

We are going to construct regular expressions from a DFA by eliminating states.

When we eliminate a state s, all the paths that went through s no longer exist in

the automaton.

If the language of the automaton is not to change, we must include, on an arc

that goes directly from q to p ,

the labels of paths that went from some state q to state p , through s.

The label of this arc can now involve strings, rather than single symbols (may be

an infinite number of strings).

We use a regular expression to represent all such strings.

Thus, we consider automata that have regular expressions as labels.

Conversion of Finite Automata to Regular Expressions.

Regular expressions and finite automata have equivalent expressive power:

• For every regular expression R, there is a corresponding FA that accepts the set of strings

generated by R.

• For every FA A there is a corresponding regular expression that generates the set of

strings accepted by A.

The proof is in two parts:

1. an algorithm that, given a regular expression R, produces an FA A such that L(A) ==

L(R).

2. an algorithm that, given an FA A, produces a regular expression R such that L(R) ==

L(A).

Our construction of FA from regular expressions will allow "epsilon transitions" (a transition

from one state to another with epsilon as the label). Such a transition is always possible, since

epsilon (or the empty string) can be said to exist between any two input symbols. We can show

that such epsilon transitions are a notational convenience; for every FA with epsilon transitions

there is a corresponding FA without them.

Formal Language Automata and Automata Theory MRITS

Designing Finite Automata from Regular Expression

In this article, we will see some popular regular expressions and how we can convert them to

finite automata.

• Even number of a’s : The regular expression for even number of a’s is (b|ab*ab*)*. We can

construct a finite automata as shown in Figure 1.

The above automata will accept all strings which have even number of a’s. For zero a’s, it

will be in q0 which is final state. For one ‘a’, it will go from q0 to q1 and the string will

not be accepted. For two a’s at any positions, it will go from q0 to q1 for 1st ‘a’ and q1 to

q0 for second ‘a’. So, it will accept all strings with even number of a’s.

• String with ‘ab’ as substring : The regular expression for strings with ‘ab’ as substring is

(a|b)*ab(a|b)*. We can construct finite automata as shown in Figure 2.

• The above automata will accept all string which have ‘ab’ as substring. The automata will

remain in initial state q0 for b’s. It will move to q1 after reading ‘a’ and remain in same

state for all ‘a’ afterwards. Then it will move to q2 if ‘b’ is read. That means, the string

has read ‘ab’ as substring if it reaches q2.

• String with count of ‘a’ divisible by 3 : The regular expression for strings with count of

a divisible by 3 is {a3n | n >= 0}. We can construct automata as shown in Figure 3.

Formal Language Automata and Automata Theory MRITS

The above automata will accept all string of form a3n. The automata will remain in initial

state q0 for ɛ and it will be accepted. For string ‘aaa’, it will move from q0 to q1 then q1

to q2 and then q2 to q0. For every set of three a’s, it will come to q0, hence accepted.

Otherwise, it will be in q1 or q2, hence rejected.

Note : If we want to design a finite automata with number of a’s as 3n+1, same automata

can be used with final state as q1 instead of q0.

If we want to design a finite automata with language {akn | n >= 0}, k states are required.

We have used k = 3 in our example.

• Binary numbers divisible by 3 : The regular expression for binary numbers which are

divisible by three is (0|1(01*0)*1)*. The examples of binary number divisible by 3 are 0,

011, 110, 1001, 1100, 1111, 10010 etc. The DFA corresponding to binary number

divisible by 3 can be shown in Figure 4.

The above automata will accept all binary numbers divisible by 3. For 1001, the automata

will go from q0 to q1, then q1 to q2, then q2 to q1 and finally q2 to q0, hence accepted.

For 0111, the automata will go from q0 to q0, then q0 to q1, then q1 to q0 and finally q0

to q1, hence rejected.

• String with regular expression (111 + 11111)* : The string accepted using this regular

expression will have 3, 5, 6(111 twice), 8 (11111 once and 111 once), 9 (111 thrice), 10

(11111 twice) and all other counts of 1 afterwards. The DFA corresponding to given

regular expression is given in Figure 5.

Formal Language Automata and Automata Theory MRITS

Equivalence of Regular Expressions and NFA-ε

• Note: Throughout the following, keep in mind that a string is accepted by an NFA-ε if

there exists a path from the start state to a final state.

• Lemma 1: Let r be a regular expression. Then there exists an NFA-ε M such that L(M) =

L(r). Furthermore, M has exactly one final state with no transitions out of it.

• Proof: (by induction on the number of operators, denoted by OP(r), in r).

• Basis: OP(r) = 0

Then r is either Ø, ε, or a, for some symbol a in Σ

Formal Language Automata and Automata Theory MRITS

• Inductive Hypothesis: Suppose there exists a k 0 such that for any regular expression r

where 0 OP(r) k, there exists an NFA-ε such that L(M) = L(r). Furthermore, suppose that M

has exactly one final state.

• Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where

k + 1 >= 1.

Case 1) r = r1 + r2

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive hypothesis there

exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and L(M2) = L(r2). Furthermore,

both M1 and M2 have exactly one final state.

Case 2) r = r1r2

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.

Case 3) r = r1*

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis there exists an NFA-ε

machine M1 such that L(M1) = L(r1). Furthermore, M1 has exactly one final state.

Formal Language Automata and Automata Theory MRITS

Examples:

Problem: Construct FA equivalent to RE, r = 0(0+1)*

Solution: r = r1r2 r1 = 0

r2 = (0+1)*

r2 = r3* r3 = 0+1

r3 = r4 + r5 r4 = 0

r5 = 1

Transition graph:

Formal Language Automata and Automata Theory MRITS

Definitions Required to Convert a DFA to a Regular Expression

1. Let M = (Q, Σ, δ, q1, F) be a DFA with state set Q = {q1, q2, …, qn},

and define: Ri,j = { x | x is in Σ* and δ(qi,x) = qj

Ri,j is the set of all strings that define a path in M from qi to qj.

2. Note that states have been numbered starting at 1!

Observations;

Formal Language Automata and Automata Theory MRITS

n

Lemma 2: Let M = (Q, Σ, δ, q1, F) be a DFA. Then there exists a regular

expression r such that L(M) = L(r).

Proof:

First we will show (by induction on k) that for all i,j, and k, where 1 i,j

that there exists a regular expression r such that L(r) = Rki,j .

Basis: k=0

And 0 k n,

R0i,j contains single symbols, one for each transition from qi to qj, and possibly ε if i=j.

Case 1) No transitions from qi to qj and i != j r0i,j = Ø

r0
i,j = Ø

Case 2) At least one (m 1) transition from qi to qj and i != jCase 2) At least one (m 1)

transition from qi to qj and i != j

r0
i,j = a1 + a2 + a3 + … + am where δ(qi, ap) = qj,

for all 1 p m

Case 3) No transitions from qi to qj and i = j

r0
i,j = ε

Case 4) At least one (m 1) transition from qi to qj and i = j
r0

i,j = a1 + a2 + a3 + … + am + ε where δ(qi, ap) = qj

for all 1 p m

Inductive Hypothesis:

Formal Language Automata and Automata Theory MRITS

Suppose that Rk-1
i,j can be represented by the regular expression rk-1

i,j for all
1 i,j n, and some k1.

Formal Language Automata and Automata Theory MRITS

Formal Language Automata and Automata Theory MRITS

Applications of Regular Expressions

Applications:

• Regular expressions are useful in a wide variety of text processing tasks, and more

generally string processing, where the data need not be textual. Common applications

include data validation, data scraping (especially web scraping), data wrangling, simple

parsing, the production of syntax highlighting systems, and many other tasks.

• While regexps would be useful on Internet search engines, processing them across the

entire database could consume excessive computer resources depending on the complexity

and design of the regex.

Algebraic Laws for Regular Expressions

Definition :Two regular expressions with variables are equivalent if whatever

languageswe substitute for the variables, the results of the two expressions are the

same language.

Formal Language Automata and Automata Theory MRITS

Some laws for union and concatenation

L(M+N)=LM+LN (distributive)

(L+M)N=LN+MN (distributive)

Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages:

Formal Language Automata and Automata Theory MRITS

In the theory of formal languages, the pumping lemma for regular languages is a

lemma that describes an essential property of all regular languages. Informally, it says that all

sufficiently long words in a regular language may be pumped—that is, have a middle section of

the word repeated an arbitrary number of times—to produce a new word that also lies within the

same language.

Specifically, the pumping lemma says that for any regular language L there exists a constant p

such that any word w in L with length at least p can be split into three substrings, w = xyz, where

the middle portion y must not be empty, such that the words xz, xyz, xyyz, xyyyz, … constructed

by repeating y zero or more times are still in L. This process of repetition is known as

"pumping". Moreover, the pumping lemma guarantees that the length of xy will be at most p,

imposing a limit on the ways in which w may be split. Finite languages vacuously satisfy the

pumping lemma by having p equal to the maximum string length in L plus one.

The pumping lemma is useful for disproving the regularity of a specific language in question. It

was first proven by Michael Rabin and Dana Scott in 1959,[1] and rediscovered shortly after by

Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir in 1961, as a simplification of their

pumping lemma for context-free languages.

Statement of the pumping lemma

Let L be a regular language. Then there exists an integer p ≥ 1 depending only on L such that

every string w in L of length at least p (p is called the "pumping length"[4]) can be written as w =

xyz (i.e., w can be divided into three substrings), satisfying the following conditions:

1. |y| ≥ 1,

2. |xy| ≤ p, and

3. xynz ∈ L for all n ≥ 0.

y is the substring that can be pumped (removed or repeated any number of times, and the

resulting string is always in L). (1) means the loop y to be pumped must be of length at least one;

(2) means the loop must occur within the first p characters. |x| must be smaller than p (conclusion

of (1) and (2)), but apart from that, there is no restriction on x and z.

In simple words, for any regular language L, any sufficiently long word w (in L) can be split into

3 parts. i.e. w = xyz , such that all the strings xynz for n ≥ 0 are also in L.

Below is a formal expression of the Pumping Lemma

Use of the lemma

The pumping lemma is often used to prove that a particular language is non-regular: a proof by

contradiction (of the language's regularity) may consist of exhibiting a word (of the required

length) in the language that lacks the property outlined in the pumping lemma.

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Lemma_%28mathematics%29
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Vacuous_truth
https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Dana_Scott
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#cite_note-1
https://en.wikipedia.org/wiki/Yehoshua_Bar-Hillel
https://en.wikipedia.org/wiki/Micha_A._Perles
https://en.wikipedia.org/wiki/Eli_Shamir
https://en.wikipedia.org/wiki/Pumping_lemma_for_context-free_languages
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#cite_note-BLRS86-4
https://en.wikipedia.org/wiki/Proof_by_contradiction
https://en.wikipedia.org/wiki/Proof_by_contradiction

Formal Language Automata and Automata Theory MRITS

For example, the language L = {anbn : n ≥ 0} over the alphabet Σ = {a, b} can be shown to be

non-regular as follows. Let w, x, y, z, p, and i be as used in the formal statement for the pumping

lemma above. Let w in L be given by w = apbp. By the pumping lemma, there must be some

decomposition w = xyz with |xy| ≤ p and |y| ≥ 1 such that xyiz in L for every i ≥ 0. Using |xy| ≤ p,

we know y only consists of instances of a. Moreover, because |y| ≥ 1, it contains at least one

instance of the letter a. We now pump y up: xy2z has more instances of the letter a than the letter

b, since we have added some instances of a without adding instances of b. Therefore, xy2z is not

in L. We have reached a contradiction. Therefore, the assumption that L is regular must be

incorrect. Hence L is not regular.

The proof that the language of balanced (i.e., properly nested) parentheses is not regular follows

the same idea. Given p, there is a string of balanced parentheses that begins with more than p left

parentheses, so that y will consist entirely of left parentheses. By repeating y, we can produce a

string that does not contain the same number of left and right parentheses, and so they cannot be

balanced.

Proof of the pumping lemma

Proof idea: Whenever a sufficiently long string xyz is recognized by a finite automaton, it must have

reached some state (qs=qt) twice. Hence, after repeating ("pumping") the middle part y arbitrarily often

(xyyz, xyyyz, ...) the word will still be recognized.

For every regular language there is a finite state automaton (FSA) that accepts the language. The

number of states in such an FSA are counted and that count is used as the pumping length p. For

a string of length at least p, let q0 be the start state and let q1, ..., qp be the sequence of the next p

states visited as the string is emitted. Because the FSA has only p states, within this sequence of

p + 1 visited states there must be at least one state that is repeated. Write qs for such a state. The

transitions that take the machine from the first encounter of state qs to the second encounter of

state qs match some string. This string is called y in the lemma, and since the machine will match

a string without the y portion, or with the string y repeated any number of times, the conditions of

the lemma are satisfied.

For example, the following image shows an FSA.

https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#Formal_statement
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#Formal_statement
https://en.wikipedia.org/wiki/Dyck_language
https://en.wikipedia.org/wiki/String_%28formal_languages%29
https://en.wikipedia.org/wiki/Finite_automaton#Mathematical_model
https://en.wikipedia.org/wiki/Finite_state_automaton

Formal Language Automata and Automata Theory MRITS

The FSA accepts the string: abcd. Since this string has a length at least as large as the number of

states, which is four, the pigeonhole principle indicates that there must be at least one repeated

state among the start state and the next four visited states. In this example, only q1 is a repeated

state. Since the substring bc takes the machine through transitions that start at state q1 and end at

state q1, that portion could be repeated and the FSA would still accept, giving the string abcbcd.

Alternatively, the bc portion could be removed and the FSA would still accept giving the string

ad. In terms of the pumping lemma, the string abcd is broken into an x portion a, a y portion bc

and a z portion d.

General version of pumping lemma for regular languages

If a language L is regular, then there exists a number p ≥ 1 (the pumping length) such that every

string uwv in L with |w| ≥ p can be written in the form

uwv = uxyzv

with strings x, y and z such that |xy| ≤ p, |y| ≥ 1 and

uxyizv is in L for every integer i ≥ 0.[5]

From this, the above standard version follows a special case, with both u and v being the empty

string.

Since the general version imposes stricter requirements on the language, it can be used to prove

the non-regularity of many more languages, such as { ambncn : m≥1 and n≥1 }.[6]

Converse of lemma not true

While the pumping lemma states that all regular languages satisfy the conditions described

above, the converse of this statement is not true: a language that satisfies these conditions may

still be non-regular. In other words, both the original and the general version of the pumping

lemma give a necessary but not sufficient condition for a language to be regular.

For example, consider the following language L:

In other words, L contains all strings over the alphabet {0,1,2,3} with a substring of length 3

including a duplicate character, as well as all strings over this alphabet where precisely 1/7 of the

string's characters are 3's. This language is not regular but can still be "pumped" with p = 5.

Suppose some string s has length at least 5. Then, since the alphabet has only four characters, at

least two of the first five characters in the string must be duplicates. They are separated by at

most three characters.

• If the duplicate characters are separated by 0 characters, or 1, pump one of the other two

characters in the string, which will not affect the substring containing the duplicates.

https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#cite_note-5
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#Formal_statement
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#cite_note-6
https://en.wikipedia.org/wiki/Necessary_and_sufficient_condition

Formal Language Automata and Automata Theory MRITS

• If the duplicate characters are separated by 2 or 3 characters, pump 2 of the characters separating

them. Pumping either down or up results in the creation of a substring of size 3 that contains 2

duplicate characters.
• The second condition of L ensures that L is not regular: Consider the string . This string is in L

exactly when and thus L is not regular by the Myhill-Nerode theorem.

The Myhill-Nerode theorem provides a test that exactly characterizes regular languages. The

typical method for proving that a language is regular is to construct either a finite state machine

or a regular expression for the language.

Applications of the Pumping Lemma

Not all languages are regular. For example, the language L = {anbn : n ≥ 0} is not regular.

Similarly, the language {ap : p is a prime number} is not regular. A pertinent question therefore

is how do we know if a language is not regular.

Question: Can we conclude that a language is not regular if no one could come up with a DFA,

NFA, ε-NFA, regular expression or regular grammar so far?

- No. Since, someone may very well come up with any of these in future.

We need a property that just holds for regular languages and so we can prove that any language

without that property is not regular. Let's recall some of the properties.

• We have seen that a regular language can be expressed by a finite state automaton. Be it

deterministic or non-deterministic, the automaton consists of a finite set of states.

• Since the states are finite, if the automaton has no loop, the language would be finite.

- Any finite language is indeed a regular language since we can express the language

using the regular

expression: S1 + S2 + ... + SN, where N is the total number of strings accepted by the

automaton.

• However, if the automaton has a loop, it is capable of accepting infinite number of strings.

- Because, we can loop around any number of times and keep producing more and more

strings.

- This property is called the pumping property (elaborated below).

The pumping property of regular languages

Any finite automaton with a loop can be divided into parts three.

https://en.wikipedia.org/wiki/Myhill-Nerode_theorem
https://en.wikipedia.org/wiki/Myhill-Nerode_theorem
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Regular_expression

Formal Language Automata and Automata Theory MRITS

• Part 1: The transitions it takes before the loop.
• Part 2: The transitions it takes during the loop.
• Part 3: The transitions it takes after the loop.

For example consider the following DFA. It accepts all strings that start with aba followed by

any number of baa's and finally ending with ba.

1. What strings are accepted by this DFA?

ababaaba, ababaabaaba, ababaabaabaaba, so on and so forth. Thus the strings accepted

by the above DFA can be divided into three parts: aba, (baa)i and ba. Here, i > 0.

Investigating this further, we can say that any string w accepted by this DFA can be written as w

= x yi z

where y represents the part that can be pumped again and again to generate more and more valid

strings. This is shown below for the given example.

Before we generalize further, let's investigate this example a little more.

2. What if the loop was at the beginning? Say a self-loop at q0 instead of at q2.

Then x = ε or |x| = 0. In such a special case, w = yz.

Formal Language Automata and Automata Theory MRITS

3. What is the loop was at the end. Say a self loop at q6 instead of at q2.

Then z = ε or |z| = 0. In such a special case, w = xy.

4. Can y be equal to ε ever?

No. It is impossible. If y = ε, it implies there is no loop which implies the language is finite.

We have already seen that a finite language is always regular. So, we are now concerned only

with infinite regular language. Hence, y can never be ε. Or |y| > 0.

5. What is the shortest string that is accepted by the DFA?

ababa. Obviously, a string obtained without going through the loop.

There is a catch however. See the next question.

6. What is the shortest string accepted if there are more final states? Say q2 is final.

ab of length 2.

7. What is the longest string accepted by the DFA without going through the loop even once?

ababa (= xz). So, any string of length > 5 accepted by DFA must go through the loop at least

once.

8. What is the longest string accepted by the DFA by going through the loop exactly once?

ababaaba (= xyz) of length 8. We call this pumping length.

More precisely, pumping length is an integer p denoting the length of the string w such that w is

obtained by going through the loop exactly once. In other words, |w| = |xyz| = p.

9. Of what use is this pumping length p?

We can be sure that |xy| ≤ p. This can be used to prove a language non-regular.

Now, let's define a regular language based on the pumping property.

Pumping Lemma: If L is a regular language, then there exists a constant p such that every string

w ∈ L, of length p or more can be written as w = xyz, where

1. |y| > 0
2. |xy| ≤ p
3. xyiz ∈ L for all i

Proving languages non-regular

1. The language L = { anbn : n ≠ 0 } is not regular.

Before proving L is not regular using pumping property, let's see why we can't come up with a

DFA or regular expression for L.

L = { ε, ab, aabb, aaabbb, }

Formal Language Automata and Automata Theory MRITS

It may be tempting to use the regular expression a*b* to describe L. No doubt, a*b* generates

these strings. However, it is not appropriate since it generates other strings not in L such as a, b,

aa, ab, aaa, aab, abb, ...

Let's try to come up with a DFA. Since it has to accept ε, start state has to be final. The following

DFA can accept anbn for n ≤ 3. i.e. {ε, a, b, ab, aabb, aaabbb}

The basic problem is DFA does not have any memory. A transition just depends on the current

state. So it cannot keep count of how many a's it has seen. So, it has no way to match the number

of a's and b's. So, only way to accept all the strings of L is to keep adding newer and newer states

which makes automaton to infinite states since n is unbounded.

Now, let's prove that L does not have the pumping property.

Lets assume L is regular. Let p be the pumping length.

Consider a string w = aa....abb. b such that |w| = p.

⇒ w = ap/2bp/2

Formal Language Automata and Automata Theory MRITS

We know that w can be broken into three terms xyz such that y ≠ ε and xyiz ∈ L.

There are three cases to consider.

• Case 1: y is made up of only a's

Then xy2z has more a's than b's and does not belong to L.

• Case 2: y is made up of only b's

Then xy2z has more b's than a's and does not belong to L.

• Case 3: y is made up of a's and b's

Then xy2z has a's and b's out of order and does not belong to L.

Since none of the 3 cases hold, the pumping property does not hold for L. And therefore L is not

regular.

2. The language L = { uuR : u ∈ {a,b}*} is not regular.

Lets assume L is regular. Let p be the pumping length.

Consider a string w = apbbap.

|w| = 2p + 2 ≥ p

Since, xy ≤ p, xy will consist of only a's.

⇒ y is made of only a's

⇒ y2 is made of more number of a's than y since |y| > 0

(Let's say y 2 has m a's more than y where m > 1)

⇒ xy2z = ap+mbbap where m ≥ 1

⇒ xy2z = ap+mbbap cannot belong to L.

Therefore, pumping property does not hold for L. Hence, L is not regular.

3. The language L = { an : n is prime } is not regular.

Lets assume L is regular. Let p be the pumping length. Let q ≥ p be a prime number (since we

cannot assume that pumping length p will be prime).

Consider the string w = aa a such that |w| = q ≥ p.

Formal Language Automata and Automata Theory MRITS

We know that w can be broken into three terms xyz such that y ≠ ε and xyiz ∈ L

⇒ xyq+1z must belong to L

⇒ |xyq+1z| must be prime

|xyq+1z| = |xyzyq|

= |xyz| + |y q|

= q + q.|y|

= q(1 + |y|) which is a composite number.

Therefore, xyq+1z cannot belong to L. Hence, L is not regular.

Exercises

Show that the following languages are not regular.

4. L = { anbm : n ≠ m }

5. L = { anbm : n > m }

6. L = { w : na(w) = nb(w) }

7. L = { ww : w ∈ {a,b}* }

8. L = { an2 : n > 0 }

IMPORTANT NOTE

Never use pumping lemma to prove a language regular. Pumping property is necessary but

not sufficient for regularity.

Closure Properties of Regular Languages:

For natural language that is regulated, see List of language regulators.

"Kleene's theorem" redirects here. For his theorems for recursive functions, see Kleene's recursion

theorem.

In theoretical computer science and formal language theory, a regular language (also called a

rational language[1][2]) is a formal language that can be expressed using a regular expression, in

the strict sense of the latter notion used in theoretical computer science (as opposed to many

regular expressions engines provided by modern programming languages, which are augmented

with features that allow recognition of languages that cannot be expressed by a classic regular

expression).

https://en.wikipedia.org/wiki/List_of_language_regulators
https://en.wikipedia.org/wiki/Kleene%27s_recursion_theorem
https://en.wikipedia.org/wiki/Kleene%27s_recursion_theorem
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Formal_language_theory
https://en.wikipedia.org/wiki/Regular_language#cite_note-Mitkov2003-1
https://en.wikipedia.org/wiki/Regular_language#cite_note-Lawson2003-2
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression#Patterns_for_non-regular_languages
https://en.wikipedia.org/wiki/Regular_expression#Patterns_for_non-regular_languages

Formal Language Automata and Automata Theory MRITS

Alternatively, a regular language can be defined as a language recognized by a finite automaton.

The equivalence of regular expressions and finite automata is known as Kleene's theorem[3]

(after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular

languages are defined to be the languages that are generated by Type-3 grammars (regular

grammars).

Regular languages are very useful in input parsing and programming language design

Closure properties of Regular languages

Formal definition

The collection of regular languages over an alphabet Σ is defined recursively as follows:

• The empty language Ø, and the empty string language {ε} are regular languages.

• For each a ∈ Σ (a belongs to Σ), the singleton language {a} is a regular language.

• If A and B are regular languages, then A 𝖴 B (union), A • B (concatenation), and A* (Kleene star)
are regular languages.

• No other languages over Σ are regular.

See regular expression for its syntax and semantics. Note that the above cases are in effect the

defining rules of regular expression.

Examples

All finite languages are regular; in particular the empty string language {ε} = Ø* is regular.

Other typical examples include the language consisting of all strings over the alphabet {a, b}

which contain an even number of as, or the language consisting of all strings of the form: several

as followed by several bs.

A simple example of a language that is not regular is the set of strings { anbn | n ≥ 0 }.[4]

Intuitively, it cannot be recognized with a finite automaton, since a finite automaton has finite

memory and it cannot remember the exact number of a's. Techniques to prove this fact

rigorously are given below.

Equivalent formalisms

A regular language satisfies the following equivalent properties:

1. it is the language of a regular expression (by the above definition)

2. it is the language accepted by a nondeterministic finite automaton (NFA)[note 1][note 2]

3. it is the language accepted by a deterministic finite automaton (DFA)[note 3][note 4]

4. it can be generated by a regular grammar[note 5][note 6]

5. it is the language accepted by an alternating finite automaton

https://en.wikipedia.org/wiki/Finite_automaton
https://en.wikipedia.org/wiki/Regular_language#cite_note-RozenbergSalomaa1997-3
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Alphabet_%28formal_languages%29
https://en.wikipedia.org/wiki/Singleton_%28mathematics%29
https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Regular_expression#Formal_language_theory
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Regular_language#cite_note-4
https://en.wikipedia.org/wiki/Regular_language#Location_in_the_Chomsky_hierarchy
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://en.wikipedia.org/wiki/Regular_language#cite_note-5
https://en.wikipedia.org/wiki/Regular_language#cite_note-6
https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://en.wikipedia.org/wiki/Regular_language#cite_note-7
https://en.wikipedia.org/wiki/Regular_language#cite_note-8
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Regular_language#cite_note-9
https://en.wikipedia.org/wiki/Regular_language#cite_note-10
https://en.wikipedia.org/wiki/Alternating_finite_automaton

Formal Language Automata and Automata Theory MRITS

6. it can be generated by a prefix grammar

7. it can be accepted by a read-only Turing machine

8. it can be defined in monadic second-order logic (Büchi-Elgot-Trakhtenbrot theorem[5])

9. it is recognized by some finite monoid M, meaning it is the preimage { w∈Σ* | f(w)∈S } of a

subset S of a finite monoid M under a monoid homomorphism f: Σ* → M from the free monoid on

its alphabet[note 7]

10. the number of equivalence classes of its "syntactic relation" ~ is finite[note 8][note 9] (this number

equals the number of states of the minimal deterministic finite automaton accepting L.)

Properties 9. and 10. are purely algebraic approaches to define regular languages; a similar set of

statements can be formulated for a monoid M⊂Σ*. In this case, equivalence over M leads to the

concept of a recognizable language.

Some authors use one of the above properties different from "1." as alternative definition of

regular languages.

Some of the equivalences above, particularly those among the first four formalisms, are called

Kleene's theorem in textbooks. Precisely which one (or which subset) is called such varies

between authors. One textbook calls the equivalence of regular expressions and NFAs ("1." and

"2." above) "Kleene's theorem".[6] Another textbook calls the equivalence of regular expressions

and DFAs ("1." and "3." above) "Kleene's theorem".[7] Two other textbooks first prove the

expressive equivalence of NFAs and DFAs ("2." and "3.") and then state "Kleene's theorem" as

the equivalence between regular expressions and finite automata (the latter said to describe

"recognizable languages").[2][8] A linguistically oriented text first equates regular grammars ("4."

above) with DFAs and NFAs, calls the languages generated by (any of) these "regular", after

which it introduces regular expressions which it terms to describe "rational languages", and

finally states "Kleene's theorem" as the coincidence of regular and rational languages.[9] Other

authors simply define "rational expression" and "regular expressions" as synonymous and do the

same with "rational languages" and "regular languages".[1][2]

Closure properties

The regular languages are closed under the various operations, that is, if the languages K and L

are regular, so is the result of the following operations:

• the set theoretic Boolean operations: union K 𝖴 L, intersection K ∩ L, and complement L, hence

also relative complement K-L.

• the regular operations: K 𝖴 L, concatenation K ∘ L, and Kleene star L*.

• the trio operations: string homomorphism, inverse string homomorphism, and intersection with

regular languages. As a consequence they are closed under arbitrary finite state transductions, like

quotient K / L with a regular language. Even more, regular languages are closed under quotients

with arbitrary languages: If L is regular then L/K is regular for any K.[citation needed]

• the reverse (or mirror image) LR.[citation needed]

https://en.wikipedia.org/wiki/Prefix_grammar
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Monadic_predicate_calculus
https://en.wikipedia.org/wiki/Second-order_logic
https://en.wikipedia.org/w/index.php?title=B%C3%BCchi-Elgot-Trakhtenbrot_theorem&action=edit&redlink=1
https://en.wikipedia.org/wiki/Regular_language#cite_note-11
https://en.wikipedia.org/wiki/Recognizable_set
https://en.wikipedia.org/wiki/Monoid
https://en.wikipedia.org/wiki/Preimage
https://en.wikipedia.org/wiki/Monoid_homomorphism
https://en.wikipedia.org/wiki/Free_monoid
https://en.wikipedia.org/wiki/Regular_language#cite_note-12
https://en.wikipedia.org/wiki/Syntactic_relation
https://en.wikipedia.org/wiki/Regular_language#cite_note-13
https://en.wikipedia.org/wiki/Regular_language#cite_note-14
https://en.wikipedia.org/wiki/DFA_minimization
https://en.wikipedia.org/wiki/Regular_language#cite_note-SedgewickWayne2011-15
https://en.wikipedia.org/wiki/Regular_language#cite_note-AlloucheShallit2003-16
https://en.wikipedia.org/wiki/Regular_language#cite_note-Lawson2003-2
https://en.wikipedia.org/wiki/Regular_language#cite_note-Rosen2011-17
https://en.wikipedia.org/wiki/Regular_language#cite_note-BunkeSanfeliu1990-18
https://en.wikipedia.org/wiki/Regular_language#cite_note-Mitkov2003-1
https://en.wikipedia.org/wiki/Regular_language#cite_note-Lawson2003-2
https://en.wikipedia.org/wiki/Closure_%28mathematics%29
https://en.wikipedia.org/wiki/Union_of_two_regular_languages
https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
https://en.wikipedia.org/wiki/Complement_%28set_theory%29
https://en.wikipedia.org/wiki/Relative_complement
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Abstract_family_of_languages
https://en.wikipedia.org/wiki/String_homomorphism
https://en.wikipedia.org/wiki/Finite_state_transducer
https://en.wikipedia.org/wiki/Right_quotient

Formal Language Automata and Automata Theory MRITS

Decidability properties

Given two deterministic finite automata A and B, it is decidable whether they accept the same

language.[12] As a consequence, using the above closure properties, the following problems are

also decidable for arbitrarily given deterministic finite automata A and B, with accepted

languages LA and LB, respectively:

• Containment: is LA ⊆ LB ?
[note 10]

• Disjointness: is LA ∩ LB = {} ?
• Emptiness: is LA = {} ?

• Universality: is LA = Σ* ?

• Membership: given a ∈ Σ*, is a ∈ LB ?

For regular expressions, the universality problem is NP-complete already for a singleton

alphabet.[13] For larger alphabets, that problem is PSPACE-complete. If regular expressions are

extended to allow also a squaring operator, with "A2" denoting the same as "AA", still just

regular languages can be described, but the universality problem has an exponential space lower

bound,[16][17][18] and is in fact complete for exponential space with respect to polynomial-time

reduction.[19]

Complexity results

In computational complexity theory, the complexity class of all regular languages is sometimes

referred to as REGULAR or REG and equals DSPACE(O(1)), the decision problems that can

be solved in constant space (the space used is independent of the input size). REGULAR ≠ AC0,

since it (trivially) contains the parity problem of determining whether the number of 1 bits in the

input is even or odd and this problem is not in AC0. On the other hand, REGULAR does not

contain AC0, because the nonregular language of palindromes, or the nonregular language

can both be recognized in AC0.

If a language is not regular, it requires a machine with at least Ω(log log n) space to recognize

(where n is the input size).[22] In other words, DSPACE(o(log log n)) equals the class of regular

languages. In practice, most nonregular problems are solved by machines taking at least

logarithmic space.

https://en.wikipedia.org/wiki/Regular_language#cite_note-21
https://en.wikipedia.org/wiki/Regular_language#Closure_properties
https://en.wikipedia.org/wiki/Regular_language#cite_note-22
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Regular_language#cite_note-23
https://en.wikipedia.org/wiki/PSPACE-complete#Regular_expressions_and_automata
https://en.wikipedia.org/wiki/Regular_language#cite_note-26
https://en.wikipedia.org/wiki/Regular_language#cite_note-27
https://en.wikipedia.org/wiki/Regular_language#cite_note-28
https://en.wikipedia.org/wiki/Regular_language#cite_note-29
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Complexity_class
https://en.wikipedia.org/wiki/DSPACE
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/AC0
https://en.wikipedia.org/wiki/Palindrome
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Regular_language#cite_note-32
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Logarithmic_space

Formal Language Automata and Automata Theory MRITS

Location in the Chomsky hierarchy

Regular language in classes of Chomsky hierarchy.

To locate the regular languages in the Chomsky hierarchy, one notices that every regular

language is context-free. The converse is not true: for example the language consisting of all

strings having the same number of a's as b's is context-free but not regular. To prove that a

language such as this is not regular, one often uses the Myhill–Nerode theorem or the pumping

lemma among other methods.[23]

Important subclasses of regular languages include

• Finite languages - those containing only a finite number of words.[24] These are regular languages,

as one can create a regular expression that is the union of every word in the language.

• Star-free languages, those that can be described by a regular expression constructed from the

empty symbol, letters, concatenation and all boolean operators including complementation but

not the Kleene star: this class includes all finite languages.[25]

• Cyclic languages, satisfying the conditions uv ∈ L ⇔ vu ∈ L and w ∈ L ⇔ w n ∈ L. The number

of words in a regular language

Let denote the number of words of length in . The ordinary generating function for L is the

formal power series

The generating function of a language L is a rational function if L is regular. Hence for any

regular language there exist an integer constant , complex constants and complex polynomials

such that for every the number of words of length in is .Thus, non-regularity of certain languages

can be proved by counting the words of a given length in . Consider, for example, the Dyck

language of strings of balanced parentheses. The number of words of length in the Dyck language

is equal to the Catalan number , which is not of the form , witnessing the non-regularity of the

Dyck language. Care must be taken since some of the eigenvalues could have the same

magnitude. For example, the number of words of length in the language of all even binary words

is not of the form , but the number of words of even or odd length are of this form; the

corresponding eigenvalues are . In general, for every regular language there exists a constant such

that for all , the number of words of length is asymptotically .The zeta function of a language L is

The zeta function of a regular language is not in general rational, but that of a cyclic language is.

https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Context_free_language
https://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
https://en.wikipedia.org/wiki/Regular_language#cite_note-33
https://en.wikipedia.org/wiki/Regular_language#cite_note-34
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Union_%28set_theory%29
https://en.wikipedia.org/wiki/Star-free_language
https://en.wikipedia.org/wiki/Boolean_operators
https://en.wikipedia.org/wiki/Complement_%28set_theory%29
https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Regular_language#cite_note-35
https://en.wikipedia.org/wiki/Ordinary_generating_function
https://en.wikipedia.org/wiki/Formal_power_series
https://en.wikipedia.org/wiki/Rational_function
https://en.wikipedia.org/wiki/Dyck_language
https://en.wikipedia.org/wiki/Dyck_language
https://en.wikipedia.org/wiki/Catalan_number

Formal Language Automata and Automata Theory MRITS

Generalizations

The notion of a regular language has been generalized to infinite words (see ω-automata) and to

trees (see tree automaton).

Rational set generalizes the notion (of regular/rational language) to monoids that are not

necessarily free. Likewise, the notion of a recognizable language (by a finite automaton) has

namesake as recognizable set over a monoid that is not necessarily free. Howard Straubing notes

in relation to these facts that “The term "regular language" is a bit unfortunate. Papers influenced

by Eilenberg's monograph[35] often use either the term "recognizable language", which refers to

the behavior of automata, or "rational language", which refers to important analogies between

regular expressions and rational power series. (In fact, Eilenberg defines rational and

recognizable subsets of arbitrary monoids; the two notions do not, in general, coincide.) This

terminology, while better motivated, never really caught on, and "regular language" is used

almost universally.”[36]

Rational series is another generalization, this time in the context of a formal power series over a

semiring. This approach gives rise to weighted rational expressions and weighted automata. In

this algebraic context, the regular languages (corresponding to Boolean-weighted rational

expressions) are usually called rational languages. Also in this context, Kleene's theorem finds a

generalization called the Kleene-Schützenberger theorem.

Decision Properties of Regular Languages

• Some of these questions we can answer already with what we know

– Is a given string in the language?

– Given 2 languages are there strings that are in both?

• Others require additional tools:

– Is the language the same as another regular language?

– Is there a language L that is not

regular?

Equivalence and Minimization of Automata

DFA Minimization using Myphill-Nerode Theorem

Algorithm

Input − DFA

Output − Minimized DFA

https://en.wikipedia.org/wiki/%CE%A9-automaton
https://en.wikipedia.org/wiki/Tree_automaton
https://en.wikipedia.org/wiki/Rational_set
https://en.wikipedia.org/wiki/Free_monoid
https://en.wikipedia.org/wiki/Recognizable_set
https://en.wikipedia.org/wiki/Samuel_Eilenberg
https://en.wikipedia.org/wiki/Regular_language#cite_note-Eilenberg1974-45
https://en.wikipedia.org/wiki/Regular_language#cite_note-46
https://en.wikipedia.org/wiki/Rational_series
https://en.wikipedia.org/wiki/Formal_power_series_over_a_semiring
https://en.wikipedia.org/wiki/Formal_power_series_over_a_semiring
https://en.wikipedia.org/w/index.php?title=Weighted_rational_expression&action=edit&redlink=1
https://en.wikipedia.org/wiki/Weighted_automata
https://en.wikipedia.org/wiki/Boolean_semiring
https://en.wikipedia.org/w/index.php?title=Kleene-Sch%C3%BCtzenberger_theorem&action=edit&redlink=1

Formal Language Automata and Automata Theory MRITS

Step 1 − Draw a table for all pairs of states (Qi, Qj) not necessarily connected directly [All are

unmarked initially]

Step 2 − Consider every state pair (Qi, Qj) in the DFA where Qi ∈ F and Qj ∉ F or vice versa and

mark them. [Here F is the set of final states]

Step 3 − Repeat this step until we cannot mark anymore states −

If there is an unmarked pair (Qi, Qj), mark it if the pair {δ (Qi, A), δ (Qi, A)} is marked for some

input alphabet.

Step 4 − Combine all the unmarked pair (Qi, Qj) and make them a single state in the reduced

DFA.

Example

Let us use Algorithm 2 to minimize the DFA shown below.

Step 1 − We draw a table for all pair of states.

a b c d e f

a

b

c

d

Formal Language Automata and Automata Theory MRITS

e

f

Step 2 − We mark the state pairs.

a b c d e f

a

b

c

d

e

f

Step 3 − We will try to mark the state pairs, with green colored check mark, transitively. If we

input 1 to state ‘a’ and ‘f’, it will go to state ‘c’ and ‘f’ respectively. (c, f) is already marked,

hence we will mark pair (a, f). Now, we input 1 to state ‘b’ and ‘f’; it will go to state ‘d’ and ‘f’

respectively. (d, f) is already marked, hence we will mark pair (b, f).

a b c d e f

a

b

c

d

e

f

After step 3, we have got state combinations {a, b} {c, d} {c, e} {d, e} that are unmarked.

✔

✔

✔

✔

✔

✔

✔ ✔ ✔

✔

✔

✔

✔

✔

✔

✔ ✔ ✔ ✔ ✔

Formal Language Automata and Automata Theory MRITS

We can recombine {c, d} {c, e} {d, e} into {c, d, e}

Hence we got two combined states as − {a, b} and {c, d, e}

So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e}

DFA Minimization using Equivalence Theorem

If X and Y are two states in a DFA, we can combine these two states into {X, Y} if they are not

distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ

(X, S) and δ (Y, S) is accepting and another is not accepting. Hence, a DFA is minimal if and

only if all the states are distinguishable.

Algorithm 3

Step 1 − All the states Q are divided in two partitions − final states and non-final states and are
denoted by P0. All the states in a partition are 0th equivalent. Take a counter k and initialize it
with 0.

Step 2 − Increment k by 1. For each partition in Pk, divide the states in Pk into two partitions if

they are k-distinguishable. Two states within this partition X and Y are k-distinguishable if there

is an input S such that δ(X, S) and δ(Y, S) are (k-1)-distinguishable.

Step 3 − If Pk ≠ Pk-1, repeat Step 2, otherwise go to Step 4.

Step 4 − Combine kth equivalent sets and make them the new states of the reduced DFA.

Formal Language Automata and Automata Theory MRITS

Example

Let us consider the following DFA −

q δ(q,0) δ(q,1)

a b c

b a d

c e f

d e f

e e f

f f f

Let us apply the above algorithm to the above DFA −

• P0 = {(c,d,e), (a,b,f)}
• P1 = {(c,d,e), (a,b),(f)}
• P2 = {(c,d,e), (a,b),(f)}

Hence, P1 = P2.

There are three states in the reduced DFA. The reduced DFA is as follows −

Formal Language Automata and Automata Theory MRITS

Q δ(q,0) δ(q,1)

(a, b) (a, b) (c,d,e)

(c,d,e) (c,d,e) (f)

(f) (f) (f)

Formal Language Automata and Automata Theory MRITS

MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND

SCIENCE

LECTURE NOTES

On

CS501PC: FORMAL LANGUAGES AND

AUTOMATA THEORY

III Year B.Tech. CSE/IT I-Sem

(Jntuh-R18)

CS501PC: FORMAL LANGUAGES AND AUTOMATA

THEORY

III Year B.Tech. CSE I-Sem L T P C

3 0 0 3

Course Objectives

1. To provide introduction to some of the central ideas of theoretical computer

science from the perspective of formal languages.

2. To introduce the fundamental concepts of formal languages, grammars and automata
theory.

3. Classify machines by their power to recognize languages.

4. Employ finite state machines to solve problems in computing.

5. To understand deterministic and non-deterministic machines.

6. To understand the differences between decidability and undecidability.

Course Outcomes

1. Able to understand the concept of abstract machines and their power to recognize

the languages.

2. Able to employ finite state machines for modeling and solving computing problems.

3. Able to design context free grammars for formal languages.

4. Able to distinguish between decidability and undecidability.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity,

the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search,

Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The

language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions.

Conversion of NFA to DFA, Moore and Melay machines

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular

Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to

Regular Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications

of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages,

Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a

Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential

Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in

Grammars and Languages. Push Down Automata: Definition of the Pushdown

Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final

state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA,

From PDA to CFG

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-

Productions. Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma,

Applications Closure Properties of Context-Free Languages: Closure properties of

CFL’s, Decision Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous

description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An

Undecidable Problem That is RE, Undecidable Problems about Turing Machines,

Recursive languages, Properties of recursive languages, Post's Correspondence Problem,

Modified Post Correspondence problem, Other Undecidable Problems, Counter machines.

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John

E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.

2. Theory of Computer Science – Automata languages and computation, Mishra and

Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.

3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge

University Press.

4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage

Learning.

5. Introduction to Formal languages Automata Theory and Computation Kamala

Krithivasan, Rama R, Pearson.

UNIT-III

Definition − A context-free grammar (CFG) consisting of a finite set of grammar rules is a

quadruple (N, T, P, S) where

• N is a set of non-terminal symbols.

• T is a set of terminals where N ∩ T = NULL.

• P is a set of rules, P: N → (N 𝖴 T)*, i.e., the left-hand side of the production rule P does

have any right context or left context.

• S is the start symbol.

Example

• The grammar ({A}, {a, b, c}, P, A), P : A → aA, A → abc.
• The grammar ({S, a, b}, {a, b}, P, S), P: S → aSa, S → bSb, S → ε
• The grammar ({S, F}, {0, 1}, P, S), P: S → 00S | 11F, F → 00F | ε

Generation of Derivation Tree

A derivation tree or parse tree is an ordered rooted tree that graphically represents the semantic

information a string derived from a context-free grammar.

Representation Technique

• Root vertex − Must be labeled by the start symbol.

• Vertex − Labeled by a non-terminal symbol.

• Leaves − Labeled by a terminal symbol or ε.

If S → x1x2 …… xn is a production rule in a CFG, then the parse tree / derivation tree will be as

follows −

There are two different approaches to draw a derivation tree −

Top-down Approach −

• Starts with the starting symbol S

• Goes down to tree leaves using productions

Bottom-up Approach −

• Starts from tree leaves

• Proceeds upward to the root which is the starting symbol S

Derivation or Yield of a Tree

The derivation or the yield of a parse tree is the final string obtained by concatenating the labels

of the leaves of the tree from left to right, ignoring the Nulls. However, if all the leaves are Null,

derivation is Null.

Example

Let a CFG {N,T,P,S} be

N = {S}, T = {a, b}, Starting symbol = S, P = S → SS | aSb | ε

One derivation from the above CFG is “abaabb”

S → SS → aSbS → abS → abaSb → abaaSbb → abaabb

Sentential Form and Partial Derivation Tree

A partial derivation tree is a sub-tree of a derivation tree/parse tree such that either all of its

children are in the sub-tree or none of them are in the sub-tree.

Example

If in any CFG the productions are −

S → AB, A → aaA | ε, B → Bb| ε

the partial derivation tree can be the following −

If a partial derivation tree contains the root S, it is called a sentential form. The above sub-tree

is also in sentential form.

Leftmost and Rightmost Derivation of a String

• Leftmost derivation − A leftmost derivation is obtained by applying production to the

leftmost variable in each step.

• Rightmost derivation − A rightmost derivation is obtained by applying production to the

rightmost variable in each step.

Example

Let any set of production rules in a CFG be

X → X+X | X*X |X| a

over an alphabet {a}.

The leftmost derivation for the string "a+a*a" may be −

X → X+X → a+X → a + X*X → a+a*X → a+a*a

The stepwise derivation of the above string is shown as below −

The rightmost derivation for the above string "a+a*a" may be −

X → X*X → X*a → X+X*a → X+a*a → a+a*a

The stepwise derivation of the above string is shown as below −

Left and Right Recursive Grammars

In a context-free grammar G, if there is a production in the form X → Xa where X is a non-

terminal and ‘a’ is a string of terminals, it is called a left recursive production. The grammar

having a left recursive production is called a left recursive grammar.

And if in a context-free grammar G, if there is a production is in the form X → aX where X is a

non-terminal and ‘a’ is a string of terminals, it is called a right recursive production. The

grammar having a right recursive production is called a right recursive grammar.

Context-Free Grammars

A context-free grammar (CFG) is a set of recursive rewriting rules (or productions) used to

generate patterns of strings.

A CFG consists of the following components:

• a set of terminal symbols, which are the characters of the alphabet that appear in the strings

generated by the grammar.

• a set of nonterminal symbols, which are placeholders for patterns of terminal symbols that can be

generated by the nonterminal symbols.

• a set of productions, which are rules for replacing (or rewriting) nonterminal symbols (on the left

side of the production) in a string with other nonterminal or terminal symbols (on the right side of

the production).

• a start symbol, which is a special nonterminal symbol that appears in the initial string generated

by the grammar.

To generate a string of terminal symbols from a CFG, we:

• Begin with a string consisting of the start symbol;

• Apply one of the productions with the start symbol on the left hand size, replacing the start

symbol with the right hand side of the production;

• Repeat the process of selecting nonterminal symbols in the string, and replacing them with the

right hand side of some corresponding production, until all nonterminals have been replaced by

terminal symbols.

A CFG for Arithmetic Expressions

An example grammar that generates strings representing arithmetic expressions with the four

operators +, -, *, /, and numbers as operands is:

1. <expression> --> number

2. <expression> --> (<expression>)

3. <expression> --> <expression> + <expression>

4. <expression> --> <expression> - <expression>

5. <expression> --> <expression> * <expression>

6. <expression> --> <expression> / <expression>

The only nonterminal symbol in this grammar is <expression>, which is also the start symbol.

The terminal symbols are {+,-,*,/,(,),number}. (We will interpret "number" to represent any valid

number.)

The first rule (or production) states that an <expression> can be rewritten as (or replaced by) a

number. In other words, a number is a valid expression.

The second rule says that an <expression> enclosed in parentheses is also an <expression>. Note

that this rule defines an expression in terms of expressions, an example of the use of recursion in

the definition of context-free grammars.

The remaining rules say that the sum, difference, product, or division of two <expression>s is

also an expression.

Generating Strings from a CFG

In our grammar for arithmetic expressions, the start symbol is <expression>, so our initial string

is:

<expression>

Using rule 5 we can choose to replace this nonterminal, producing the string:

<expression> * <expression>

We now have two nonterminals to replace. We can apply rule 3 to the first nonterminal, producing the

string:

<expression> + <expression> * <expression>

We can apply rule two to the first nonterminal in this string to produce:

(<expression>) + <expression> * <expression>

If we apply rule 1 to the remaining nonterminals (the recursion must end somewhere!), we get:

(number) + number * number

This is a valid arithmetic expression, as generated by the grammar.

When applying the rules above, we often face a choice as to which production to choose.

Different choices will typically result in different strings being generated.

Given a grammar G with start symbol S, if there is some sequence of productions that, when

applied to the initial string S, result in the string s, then s is in L(G), the language of the

grammar.

CFGs with Epsilon Productions

A CFG may have a production for a nonterminal in which the right hand side is the empty string

(which we denote by epsilon). The effect of this production is to remove the nonterminal from

the string being generated.

Here is a grammar for balanced parentheses that uses epsilon productions.

P --> (P)

P --> P P
P --> epsilon

We begin with the string P. We can replace P with epsilon, in which case we have generated the empty

string (which does have balanced parentheses). Alternatively, we can generate a string of balanced

parentheses within a pair of balanced parentheses, which must result in a string of balanced parentheses.

Alternatively, we can concatenate two strings of balanced parentheses, which again must result in a string

of balanced parentheses.

This grammar is equivalent to:

P --> (P) | P P | epsilon

We use the notational shorthand '|', which can be read as "or", to represent multiple rewriting rules within

a single line.

CFG Examples

A CFG describing strings of letters with the word "main" somewhere in the string:

<program> --> <letter*> m a i n <letter*>

<letter*> --> <letter> <letter*> | epsilon

<letter> --> A | B | ... | Z | a | b ... | z

A CFG for the set of identifiers in Pascal:

<id> --> <L> <LorD*>

<LorD*> --> <L> <LorD*> | <D> <LorD*> | epsilon
<L> --> A | B | ... | Z | a | b ... | z

<D> --> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A CFG describing real numbers in Pascal:

<real> --> <digit> <digit*> <decimal part> <exp>

<digit*> --> <digit> <digit*> | epsilon

<decimal part> --> '.' <digit> <digit*> | epsilon

<exp> --> 'E' <sign> <digit> <digit*> | epsilon
<sign> --> + | - | epsilon

<digit> --> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A CFG for C++ compound statements:

<compound stmt> --> { <stmt list> }

<stmt list> --> <stmt> <stmt list> | epsilon

<stmt> --> <compound stmt>

<stmt> --> if (<expr>) <stmt>

<stmt> --> if (<expr>) <stmt> else <stmt>
<stmt> --> while (<expr>) <stmt>

<stmt> --> do <stmt> while (<expr>) ;

<stmt> --> for (<stmt> <expr> ; <expr>) <stmt>

<stmt> --> case <expr> : <stmt>

<stmt> --> switch (<expr>) <stmt>

<stmt> --> break ; | continue ;

<stmt> --> return <expr> ; | goto <id> ;

Finding all the Strings Generated by a CFG

There are several ways to generate the (possibly infinite) set of strings generated by a grammar.

We will show a technique based on the number of productions used to generate the string.

Find the strings generated by the following CFG:

<S> --> w c d <S> | b <L> e | s

<L> --> <L> ; <S> | <S>

0. Applying at most zero productions, we cannot generate any strings.

1. Applying at most one production (starting with the start symbol) we can generate {wcd<S>,

b<L>e, s}. Only one of these strings consists entirely of terminal symbols, so the set of terminal

strings we can generate using at most one production is {s}.

2. Applying at most two productions, we can generate all the strings we can generate with one

production, plus any additional strings we can generate with an additional production.

{wcdwcd<S>, wcdb<L>e, wcds, b<S>e, b<L>;<S>e,s}

The set of terminal strings we can generate with at most two productions is therefore {s, wcds}.

3. Applying at most three productions, we can generate:

{wcdwcdwcd<S>, wcdwcdb<L>e, wcdwcds, wcdb<L>;<S>e,

wcdb<S>e, bwcd<S>e, bb<L>ee, bse, b<L>;<S>Se,

b<S><S>e, b<L>wcd<S>e, b<L>b<L>ee, b<L>se }

The set of terminal strings we can generate with at most three productions is therefore {s, wcds, wcdwcds,

bse}.

We can repeat this process for an arbitrary number of steps N, and find all the strings the

grammar can generate by applying N productions.

CFGs vs Regular Expressions

Context-free grammars are strictly more powerful than regular expressions.

• Any language that can be generated using regular expressions can be generated by a context-free

grammar.

• There are languages that can be generated by a context-free grammar that cannot be generated by

any regular expression.

As a corollary, CFGs are strictly more powerful than DFAs and NDFAs.

The proof is in two parts:

• Given a regular expression R , we can generate a CFG G such that L(R) == L(G).

• We can define a grammar G for which there there is no FA F such that L(F) == L(G)

In formal language theory, a context-free grammar (CFG) is a certain type of formal

grammar: a set of production rules that describe all possible strings in a given formal language.

Production rules are simple replacements. For example, the rule replaces with 5. There can be

multiple replacement rules for any given value. For example,

means that can be replaced with either or .In context-free grammars, all rules are one-to-one, one-

to-many, or one-to-none. These rules can be applied regardless of context. The left-hand side of

the production rule is always a nonterminal symbol. This means that the symbol does not appear

in the resulting formal language. So in our case, our language contains the letters and but not

Rules can also be applied in reverse to check if a string is grammatically correct according to the

grammar.

Here is an example context-free grammar that describes all two-letter strings containing the

letters and .

If we start with the nonterminal symbol then we can use the rule to turn into . We can then apply

one of the two later rules. For example, if we apply to the first we get . If we then apply to the

second we get . Since both and are terminal symbols, and in context-free grammars terminal

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Production_%28computer_science%29
https://en.wikipedia.org/wiki/Nonterminal

symbols never appear on the left hand side of a production rule, there are no more rules that can

be applied. This same process can be used, applying the second two rules in different orders in

order to get all possible strings within our simple context-free grammar.

Languages generated by context-free grammars are known as context-free languages (CFL).

Different context-free grammars can generate the same context-free language. It is important to

distinguish the properties of the language (intrinsic properties) from the properties of a particular

grammar (extrinsic properties). The language equality question (do two given context-free

grammars generate the same language?) is undecidable.

Context-free grammars arise in linguistics where they are used to describe the structure of

sentences and words in a natural language, and they were in fact invented by the linguist Noam

Chomsky for this purpose, but have not really lived up to their original expectation. By contrast,

in computer science, as the use of recursively-defined concepts increased, they were used more

and more. In an early application, grammars are used to describe the structure of programming

languages. In a newer application, they are used in an essential part of the Extensible Markup

Language (XML) called the Document Type Definition.[2]

In linguistics, some authors use the term phrase structure grammar to refer to context-free

grammars, whereby phrase-structure grammars are distinct from dependency grammars. In

computer science, a popular notation for context-free grammars is Backus–Naur form, or BNF.

Since the time of Pāṇini, at least, linguists have described the grammars of languages in terms of

their block structure, and described how sentences are recursively built up from smaller phrases,

and eventually individual words or word elements. An essential property of these block

structures is that logical units never overlap. For example, the sentence:John, whose blue car was

in the garage, walked to the grocery store.can be logically parenthesized as follows:(John,

((whose blue car) (was (in the garage))), (walked (to (the grocery store)))).

A context-free grammar provides a simple and mathematically precise mechanism for describing

the methods by which phrases in some natural language are built from smaller blocks, capturing

the "block structure" of sentences in a natural way. Its simplicity makes the formalism amenable

to rigorous mathematical study. Important features of natural language syntax such as agreement

and reference are not part of the context-free grammar, but the basic recursive structure of

sentences, the way in which clauses nest inside other clauses, and the way in which lists of

adjectives and adverbs are swallowed by nouns and verbs, is described exactly.The formalism of

context-free grammars was developed in the mid-1950s by Noam Chomsky,[3] and also their

classification as a special type of formal grammar (which he called phrase-structure

grammars).[4] What Chomsky called a phrase structure grammar is also known now as a

constituency grammar, whereby constituency grammars stand in contrast to dependency

grammars. In Chomsky's generative grammar framework, the syntax of natural language was

described by context-free rules combined with transformation rules.

Block structure was introduced into computer programming languages by the Algol project

(1957–1960), which, as a consequence, also featured a context-free grammar to describe the

resulting Algol syntax. This became a standard feature of computer languages, and the notation

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Context-free_grammar#Language_equality
https://en.wikipedia.org/wiki/Decidability_%28logic%29
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Extensible_Markup_Language
https://en.wikipedia.org/wiki/Extensible_Markup_Language
https://en.wikipedia.org/wiki/Document_Type_Definition
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-2
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Phrase_structure_grammar
https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/P%C4%81%E1%B9%87ini
https://en.wikipedia.org/wiki/Grammar
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Agreement_%28linguistics%29
https://en.wikipedia.org/wiki/Reference
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-hu106-3
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Phrase-structure_grammar
https://en.wikipedia.org/wiki/Phrase-structure_grammar
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-chomsky1956-4
https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Generative_grammar
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Algol_%28programming_language%29

for grammars used in concrete descriptions of computer languages came to be known as Backus–

Naur form, after two members of the Algol language design committee.[3] The "block structure"

aspect that context-free grammars capture is so fundamental to grammar that the terms syntax

and grammar are often identified with context-free grammar rules, especially in computer

science. Formal constraints not captured by the grammar are then considered to be part of the

"semantics" of the language.

Context-free grammars are simple enough to allow the construction of efficient parsing

algorithms that, for a given string, determine whether and how it can be generated from the

grammar. An Earley parser is an example of such an algorithm, while the widely used LR and

LL parsers are simpler algorithms that deal only with more restrictive subsets of context-free

grammars.

Formal definitions

A context-free grammar G is defined by the 4-tuple:where

1. V is a finite set; each element is called a nonterminal character or a variable. Each variable

represents a different type of phrase or clause in the sentence. Variables are also sometimes called

syntactic categories. Each variable defines a sub-language of the language defined by G.

2. Σ is a finite set of terminals, disjoint from V, which make up the actual content of the sentence.

The set of terminals is the alphabet of the language defined by the grammar G.

3. R is a finite relation from V to , where the asterisk represents the Kleene star operation. The

members of R are called the (rewrite) rules or productions of the grammar. (also commonly

symbolized by a P)

4. S is the start variable (or start symbol), used to represent the whole sentence (or program). It must

be an element of V.

Production rule notation

A production rule in R is formalized mathematically as a pair , where is a nonterminal and is a

string of ariables and/or terminals; rather than using ordered pair notation, production rules are

usually written using an arrow operator with α as its left hand side and β as its right hand side: .It

is allowed for β to be the empty string, and in this case it is customary to denote it by ε. The form

is called an ε-production.It is common to list all right-hand sides for the same left-hand side on

the same line, using | (the pipe symbol) to separate them. Rules and can hence be written as . In

this case, and is called the first and second alternative, respectively.

Rule application

For any strings , we say u directly yields v, written as , if with and such that and . Thus, v is a

result of applying the rule to u.

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-hu106-3
https://en.wikipedia.org/wiki/List_of_algorithms#Parsing
https://en.wikipedia.org/wiki/List_of_algorithms#Parsing
https://en.wikipedia.org/wiki/Earley_parser
https://en.wikipedia.org/wiki/LR_parser
https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Formal_grammar#The_syntax_of_grammars
https://en.wikipedia.org/wiki/String_%28computer_science%29
https://en.wikipedia.org/wiki/Ordered_pair
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Pipe_symbol

Repetitive rule application

For any strings we say u yields v, written as (or in some textbooks), if such that . In this case, if

(i.e.,), the relation holds. In other words, and are the reflexive transitive closure (allowing a

word to yield itself) and the transitive closure (requiring at least one step) of , respectively.

Context-free language

The language of a grammar is the set

A language L is said to be a context-free language (CFL), if there exists a CFG G, such that .

Proper CFGs

A context-free grammar is said to be proper,[7] if it has

• no unreachable symbols:

• no unproductive symbols:

• no ε-productions:

• no cycles:

Every context-free grammar can be effectively transformed into a weakly equivalent one without

unreachable symbols,[8] a weakly equivalent one without unproductive symbols,[9] and a weakly

equivalent one without cycles.[10] Every context-free grammar not producing ε can be effectively

transformed into a weakly equivalent one without ε-productions;[11] altogether, every such

grammar can be effectively transformed into a weakly equivalent proper CFG.

Example

The grammar , with productions

S → aSa,

S → bSb,

S → ε,

is context-free. It is not proper since it includes an ε-production. A typical derivation in this

grammar is

S → aSa → aaSaa → aabSbaa → aabbaa.

https://en.wikipedia.org/wiki/Reflexive_transitive_closure
https://en.wikipedia.org/wiki/Transitive_closure
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-7
https://en.wikipedia.org/wiki/Unreachable_symbol
https://en.wikipedia.org/wiki/Unproductive_symbol
https://en.wikipedia.org/wiki/Weak_equivalence_%28formal_languages%29
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-8
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-9
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-10
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-11

This makes it clear that . The language is context-free, however, it can be proved that it is not

regular.

Examples

Well-formed parentheses

The canonical example of a context-free grammar is parenthesis matching, which is

representative of the general case. There are two terminal symbols "(" and ")" and one

nonterminal symbol S. The production rules are

S → SS

S → (S)

S → ()

The first rule allows the S symbol to multiply; the second rule allows the S symbol to become

enclosed by matching parentheses; and the third rule terminates the recursion.

Well-formed nested parentheses and square brackets

A second canonical example is two different kinds of matching nested parentheses, described by

the productions:

S → SS

S → ()

S → (S)

S → []

S → [S]

with terminal symbols [] () and nonterminal S.

The following sequence can be derived in that grammar:

([[[()() [][]]]([])])

However, there is no context-free grammar for generating all sequences of two different types of

parentheses, each separately balanced disregarding the other, but where the two types need not

nest inside one another, for example:

[(])

https://en.wikipedia.org/wiki/Regular_language

or

[[[[((((]]]]))))(([))(([))([)(])(])(])

A regular grammar

Every regular grammar is context-free, but not all context-free grammars are regular. The

following context-free grammar, however, is also regular.

S → a

S → aS

S → bS

The terminals here are a and b, while the only nonterminal is S. The language described is all

nonempty strings of s and s that end in .

This grammar is regular: no rule has more than one nonterminal in its right-hand side, and each

of these nonterminals is at the same end of the right-hand side.

Every regular grammar corresponds directly to a nondeterministic finite automaton, so we know

that this is a regular language.

Using pipe symbols, the grammar above can be described more tersely as follows:

S → a | aS | bS

Matching pairs

In a context-free grammar, we can pair up characters the way we do with brackets. The simplest

example:

S → aSb

S → ab

This grammar generates the language , which is not regular (according to the pumping lemma for

regular languages).

The special character ε stands for the empty string. By changing the above grammar to

S → aSb | ε

we obtain a grammar generating the language instead. This differs only in that it contains the

empty string while the original grammar did not.

https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Bracket
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages

Algebraic expressions

Here is a context-free grammar for syntactically correct infix algebraic expressions in the

variables x, y and z:

1. S → x

2. S → y

3. S → z

4. S → S + S

5. S → S - S

6. S → S * S

7. S → S / S

8. S → (S)

This grammar can, for example, generate the string

(x + y) * x - z * y / (x + x)

as follows:

S (the start symbol)

→ S - S (by rule 5)

→ S * S - S (by rule 6, applied to the leftmost S)

→ S * S - S / S (by rule 7, applied to the rightmost S)

→ (S) * S - S / S (by rule 8, applied to the leftmost S)

→ (S) * S - S / (S) (by rule 8, applied to the rightmost S)

→ (S + S) * S - S / (S) (etc.)

→ (S + S) * S - S * S / (S)

→ (S + S) * S - S * S / (S + S)

→ (x + S) * S - S * S / (S + S)

→ (x + y) * S - S * S / (S + S)

→ (x + y) * x - S * y / (S + S)

→ (x + y) * x - S * y / (x + S)

→ (x + y) * x - z * y / (x + S)

→ (x + y) * x - z * y / (x + x)

Note that many choices were made underway as to which rewrite was going to be performed

next. These choices look quite arbitrary. As a matter of fact, they are, in the sense that the string

finally generated is always the same. For example, the second and third rewrites

https://en.wikipedia.org/wiki/Infix_notation

→ S * S - S (by rule 6, applied to the leftmost S)

→ S * S - S / S (by rule 7, applied to the rightmost S)

could be done in the opposite order:

→ S - S / S (by rule 7, applied to the rightmost S)

→ S * S - S / S (by rule 6, applied to the leftmost S)

Also, many choices were made on which rule to apply to each selected S. Changing the choices

made and not only the order they were made in usually affects which terminal string comes out

at the end.

Let's look at this in more detail. Consider the parse tree of this derivation:

Starting at the top, step by step, an S in the tree is expanded, until no more unexpanded Ses

(nonterminals) remain. Picking a different order of expansion will produce a different derivation,

but the same parse tree. The parse tree will only change if we pick a different rule to apply at

some position in the tree.

But can a different parse tree still produce the same terminal string, which is (x + y) * x -

z * y / (x + x) in this case? Yes, for this particular grammar, this is possible. Grammars

with this property are called ambiguous.

For example, x + y * z can be produced with these two different parse trees:

https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Ambiguous_grammar

However, the language described by this grammar is not inherently ambiguous: an alternative,

unambiguous grammar can be given for the language, for example:

T → x

T → y

T → z

S → S + T

S → S - T

S → S * T

S → S / T

T → (S)

S → T

(once again picking S as the start symbol). This alternative grammar will produce x + y * z

with a parse tree similar to the left one above, i.e. implicitly assuming the association (x + y) *

z, which is not according to standard operator precedence. More elaborate, unambiguous and

context-free grammars can be constructed that produce parse trees that obey all desired operator

precedence and associativity rules.

Further examples

Example 1

A context-free grammar for the language consisting of all strings over {a,b} containing an

unequal number of a's and b's:

S → U | V

https://en.wikipedia.org/wiki/Operator-precedence_parser
https://en.wikipedia.org/wiki/Operator-precedence_parser

U → TaU | TaT | UaT

V → TbV | TbT | VbT

T → aTbT | bTaT | ε

Here, the nonterminal T can generate all strings with the same number of a's as b's, the

nonterminal U generates all strings with more a's than b's and the nonterminal V generates all

strings with fewer a's than b's. Omitting the third alternative in the rule for U and V doesn't

restrict the grammar's language.

Example 2

Another example of a non-regular language is . It is context-free as it can be generated by

the following context-free grammar:

S → bSbb | A

A → aA | ε

Other examples

The formation rules for the terms and formulas of formal logic fit the definition of context-free

grammar, except that the set of symbols may be infinite and there may be more than one start

symbol.

Derivations and syntax trees

A derivation of a string for a grammar is a sequence of grammar rule applications that transform

the start symbol into the string. A derivation proves that the string belongs to the grammar's

language.

A derivation is fully determined by giving, for each step:

• the rule applied in that step

• the occurrence of its left-hand side to which it is applied

For clarity, the intermediate string is usually given as well.

For instance, with the grammar:

(1) S → S + S
(2) S → 1

(3) S → a

the string

1 + 1 + a

https://en.wikipedia.org/wiki/First-order_logic#Formation_rules

can be derived with the derivation:

S

→ (rule 1 on the first S)

S+S

→ (rule 1 on the second S)

S+S+S

→ (rule 2 on the second S)

S+1+S

→ (rule 3 on the third S)

S+1+a

→ (rule 2 on the first S)

1+1+a

Often, a strategy is followed that deterministically determines the next nonterminal to rewrite:

• in a leftmost derivation, it is always the leftmost nonterminal;

• in a rightmost derivation, it is always the rightmost nonterminal.

Given such a strategy, a derivation is completely determined by the sequence of rules applied.

For instance, the leftmost derivation

S

→ (rule 1 on the first S)

S+S

→ (rule 2 on the first S)

1+S

→ (rule 1 on the first S)

1+S+S

→ (rule 2 on the first S)

1+1+S

→ (rule 3 on the first S)

1+1+a

can be summarized as

rule 1, rule 2, rule 1, rule 2, rule 3

The distinction between leftmost derivation and rightmost derivation is important because in

most parsers the transformation of the input is defined by giving a piece of code for every

grammar rule that is executed whenever the rule is applied. Therefore, it is important to know

whether the parser determines a leftmost or a rightmost derivation because this determines the

order in which the pieces of code will be executed. See for an example LL parsers and LR

parsers.

A derivation also imposes in some sense a hierarchical structure on the string that is derived. For

example, if the string "1 + 1 + a" is derived according to the leftmost derivation:

S → S + S (1)

→ 1 + S (2)

https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/LR_parser
https://en.wikipedia.org/wiki/LR_parser

→ 1 + S + S (1)

→ 1 + 1 + S (2)

→ 1 + 1 + a (3)

the structure of the string would be:

{ { 1 }S + { { 1 }S + { a }S }S }S

where { ... }S indicates a substring recognized as belonging to S. This hierarchy can also be seen

as a tree:

This tree is called a parse tree or "concrete syntax tree" of the string, by contrast with the

abstract syntax tree. In this case the presented leftmost and the rightmost derivations define the

same parse tree; however, there is another (rightmost) derivation of the same string

S → S + S (1)

→ S + a (3)

→ S + S + a (1)

→ S + 1 + a (2)

→ 1 + 1 + a (2)

and this defines the following parse tree:

https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Note however that both parse trees can be obtained by both leftmost and rightmost derivations.

For example, the last tree can be obtained with the leftmost derivation as follows:

S → S + S (1)

→ S + S + S (1)

→ 1 + S + S (2)

→ 1 + 1 + S (2)

→ 1 + 1 + a (3)

If a string in the language of the grammar has more than one parsing tree, then the grammar is

said to be an ambiguous grammar. Such grammars are usually hard to parse because the parser

cannot always decide which grammar rule it has to apply. Usually, ambiguity is a feature of the

grammar, not the language, and an unambiguous grammar can be found that generates the same

context-free language. However, there are certain languages that can only be generated by

ambiguous grammars; such languages are called inherently ambiguous languages.

Leftmost and Rightmost Derivations:

Given a derivation tree for a word, you can "implement" it as a sequence of productions in many

different ways. The leftmost derivation is the one in which you always expand the leftmost non-

terminal. The rightmost derivation is the one in which you always expand the rightmost non-

terminal.For example, here are two parse trees borrowed from

https://en.wikipedia.org/wiki/Ambiguous_grammar
https://en.wikipedia.org/wiki/Inherently_ambiguous_language

The leftmost derivation corresponding to the left parse tree is

A→A+A→a+A→a+A−A→a+a−A→a+a−a

The rightmost derivation corresponding to the left parse tree is

A→A+A→A+A−A→A+A−a→A+a−a→a+a−a

The leftmost derivation corresponding to the right parse tree is

A→A−A→A+A−A→a+A−A→a+a−A→a+a−a

The rightmost derivation corresponding to the right parse tree is

A→A−A→A−a→A+A−a→A+a−a→a+a−a

Leftmost and Rightmost Derivations

At any stage during a parse, when we have derived some sentential form (that is not yet a

sentence) we will potentially have two choices to make:

1. which non-terminal in the sentential form to apply a production rule to
2. which production rule for that non-terminal to apply

Eg. in the above example, when we derived , we could then have applied a production

rule to any of these three non-terminals, and would then have had to choose among all the

production rules for either or .

The first decision here is relatively easy to solve: we will be reading the input string from left to

right, so it is our own interest to derive the leftmost terminal of the resulting sentence as soon as

possible. Thus, in a top-down parse we always choose the leftmost non-terminal in a sentential

form to apply a production rule to - this is called a leftmost derivation.

If we were doing a bottom-up parse then the situation would be reversed, and we would want to

do apply the production rules in reverse to the leftmost symbols; thus we are performing a

rightmost derivation in reverse.

For example, a bottom-up rightmost derivation would look like:

Note that this has no effect on the parse tree; we still get:

=1.00mm

THE LANGUAGE OF A GRAMMAR:

A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which

rewriting starts. Therefore, a In formal language theory, a grammar (when the context is not given,

often called a formal grammar for clarity) is a set of production rules for strings in a formal

language. The rules describe how to form strings from the language's alphabet that are valid

according to the language's syntax. A grammar does not describe the meaning of the strings or

what can be done with them in whatever context—only their form.

Formal language theory, the discipline that studies formal grammars and languages, is a branch of

applied mathematics. Its applications are found in theoretical computer science, theoretical

linguistics, formal semantics, mathematical logic, and other areas.

grammar is usually thought of as a language generator. However, it can also sometimes be used as

the basis for a "recognizer"—a function in computing that determines whether a given string

belongs to the language or is grammatically incorrect. To describe such recognizers, formal

language theory uses separate formalisms, known as automata theory. One of the interesting results

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Production_%28computer_science%29
https://en.wikipedia.org/wiki/String_%28computer_science%29
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Alphabet_%28computer_science%29
https://en.wikipedia.org/wiki/Syntax_%28programming_languages%29
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Formal_language_theory
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Theoretical_linguistics
https://en.wikipedia.org/wiki/Theoretical_linguistics
https://en.wikipedia.org/wiki/Formal_semantics_%28logic%29
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Recognizer
https://en.wikipedia.org/wiki/Automata_theory

of automata theory is that it is not possible to design a recognizer for certain formal languages.[1]

Parsing is the process of recognizing an utterance (a string in natural languages) by breaking it

down to a set of symbols and analyzing each one against the grammar of the language. Most

languages have the meanings of their utterances structured according to their syntax—a practice

known as compositional semantics. As a result, the first step to describing the meaning of an

utterance in language is to break it down part by part and look at its analyzed form (known as its

parse tree in computer science, and as its deep structure in generative grammar).

Introductory example

A grammar mainly consists of a set of rules for transforming strings. (If it only consisted of these

rules, it would be a semi-Thue system.) To generate a string in the language, one begins with a

string consisting of only a single start symbol. The production rules are then applied in any order,

until a string that contains neither the start symbol nor designated nonterminal symbols is

produced. A production rule is applied to a string by replacing one occurrence of the production

rule's left-hand side in the string by that production rule's right-hand side (cf. the operation of the

theoretical Turing machine). The language formed by the grammar consists of all distinct strings

that can be generated in this manner. Any particular sequence of production rules on the start

symbol yields a distinct string in the language. If there are essentially different ways of generating

the same single string, the grammar is said to be ambiguous.

For example, assume the alphabet consists of a and b, the start symbol is S, and we have the

following production rules:

1. S→aSb.

2. S→ba.

then we start with S, and can choose a rule to apply to it. If we choose rule 1, we obtain the string

aSb. If we then choose rule 1 again, we replace S with aSb and obtain the string aaSbb. If we now

choose rule 2, we replace S with ba and obtain the string aababb, and are done. We can write this

series of choices more briefly, using symbols: . The language of the grammar is then the infinite

set , where is repeated times (and in particular represents the number of times production rule 1

has been applied).

Sentential Form

A sentential form is any string derivable from the start symbol. Thus, in the derivation of

a + a * a , E + T * F and E + F * a and F + a * a are all sentential forms as are E and a +

a * a themselves.

Sentence

A sentence is a sentential form consisting only of terminals such as a + a * a. A sentence

can be derived using the following algorithm:

Algorithm

https://en.wikipedia.org/wiki/Formal_grammar#cite_note-1
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Compositional_semantics
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Deep_structure_and_surface_structure
https://en.wikipedia.org/wiki/Generative_grammar
https://en.wikipedia.org/wiki/Semi-Thue_system
https://en.wikipedia.org/wiki/Production_%28computer_science%29
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Ambiguous_grammar

Derive String

String := Start Symbol

REPEAT

Choose any nonterminal in String.

Find a production with this nonterminal on the left-hand side.

Replace the nonterminal with one of the options on the right-hand

side of the production.

UNTIL String contains only terminals.

Parse Tress:

A parse tree or parsing tree[or derivation tree or concrete syntax tree is an ordered, rooted

tree that represents the syntactic structure of a string according to some context-free grammar. The

term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term

syntax tree is more common.

Parse trees concretely[clarification needed] reflect the syntax of the input language, making them distinct

from the abstract syntax trees used in computer programming. Unlike Reed-Kellogg sentence

diagrams used for teaching grammar, parse trees do not use distinct symbol shapes for different

types of constituents.

Parse trees are usually constructed based on either the constituency relation of constituency

grammars (phrase structure grammars) or the dependency relation of dependency grammars. Parse

trees may be generated for sentences in natural languages (see natural language processing), as

well as during processing of computer languages, such as programming languages.

A related concept is that of phrase marker or P-marker, as used in transformational generative

grammar. A phrase marker is a linguistic expression marked as to its phrase structure. This may

be presented in the form of a tree, or as a bracketed expression. Phrase markers are generated by

applying phrase structure rules, and Themselves are subject to further transformational rules.

Constituency-based parse trees

The constituency-based parse trees of constituency grammars (= phrase structure grammars)

distinguish between terminal and non-terminal nodes. The interior nodes are labeled by non-

terminal categories of the grammar, while the leaf nodes are labeled by terminal categories. The

image below represents a constituency-based parse tree; it shows the syntactic structure of the

English sentence John hit the ball:

https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/String_%28computer_science%29
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Sentence_diagram
https://en.wikipedia.org/wiki/Sentence_diagram
https://en.wikipedia.org/wiki/Constituent_%28linguistics%29
https://en.wikipedia.org/wiki/Phrase_structure_grammar
https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Sentence_%28linguistics%29
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Transformational_generative_grammar
https://en.wikipedia.org/wiki/Transformational_generative_grammar
https://en.wikipedia.org/wiki/Phrase_structure_rules
https://en.wikipedia.org/wiki/Phrase_structure_grammar
https://en.wikipedia.org/wiki/Interior_node
https://en.wikipedia.org/wiki/Nonterminal
https://en.wikipedia.org/wiki/Nonterminal
https://en.wikipedia.org/wiki/Leaf_node
https://en.wikipedia.org/wiki/Terminal_symbol
https://en.wikipedia.org/wiki/English_language

The parse tree is the entire structure, starting from S and ending in each of the leaf nodes (John,

hit, the, ball). The following abbreviations are used in the tree:

• S for sentence, the top-level structure in this example

• NP for noun phrase. The first (leftmost) NP, a single noun "John", serves as the subject of

the sentence. The second one is the object of the sentence.

• VP for verb phrase, which serves as the predicate

• V for verb. In this case, it's a transitive verb hit.

• D for determiner, in this instance the definite article "the"

• N for noun

Each node in the tree is either a root node, a branch node, or a leaf node.[2] A root node is a node

that doesn't have any branches on top of it. Within a sentence, there is only ever one root node. A

branch node is a mother node that connects to two or more daughter nodes. A leaf node, however,

is a terminal node that does not dominate other nodes in the tree. S is the root node, NP and VP

are branch nodes, and John (N), hit (V), the (D), and ball (N) are all leaf nodes. The leaves are the

lexical tokens of the sentence.[3] A mother node is one that has at least one other node linked by a

branch under it. In the example, S is a parent of both N and VP. A daughter node is one that has at

least one node directly above it to which it is linked by a branch of a tree. From the example, hit

is a daughter node of V. The terms parent and child are also sometimes

Dependency-based parse trees

The dependency-based parse trees of dependency grammars[4] see all nodes as terminal, which

means they do not acknowledge the distinction between terminal and non-terminal categories.

They are simpler on average than constituency-based parse trees because they contain fewer nodes.

The dependency-based parse tree for the example sentence above is as follows:

https://en.wikipedia.org/wiki/Sentence_%28linguistics%29
https://en.wikipedia.org/wiki/Noun_phrase
https://en.wikipedia.org/wiki/Subject_%28grammar%29
https://en.wikipedia.org/wiki/Object_%28grammar%29
https://en.wikipedia.org/wiki/Verb_phrase
https://en.wikipedia.org/wiki/Predicate_%28grammar%29
https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Transitive_verb
https://en.wikipedia.org/wiki/Determiner_%28class%29
https://en.wikipedia.org/wiki/Article_%28grammar%29
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Parse_tree#cite_note-2
https://en.wikipedia.org/wiki/Parse_tree#cite_note-3
https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Parse_tree#cite_note-4

This parse tree lacks the phrasal categories (S, VP, and NP) seen in the constituency-based

counterpart above. Like the constituency-based tree, constituent structure is acknowledged. Any

complete sub-tree of the tree is a constituent. Thus this dependency-based parse tree acknowledges

the subject noun John and the object noun phrase the ball as constituents just like the constituency-

based parse tree does.

The constituency vs. dependency distinction is far-reaching. Whether the additional syntactic

structure associated with constituency-based parse trees is necessary or beneficial is a matter of

debate.

Applications of Context-Free Grammars:

in formal language theory, a context-free grammar (CFG) is a certain type of formal grammar:

a set of that describe all possible strings in a given formal language. Production rules are simple

replacements. For example, the rule

replaces with . There can be multiple replacement rules for any given value. For example,

means that can be replaced with either or .In context-free grammars, all rules are one-to-one,

one-to-many, or one-to-none. These rules can be applied regardless of context. The left-hand side

of the production rule is lways a nonterminal symbol. This means that the symbol does not

appear in the resulting formal language. So in our case, our language contains the letters and but

not Rules can also be applied in reverse to check if a string is grammatically correct according to

the grammar.Here is an example context-free grammar that describes all two-letter strings

containing the letters and .

If we start with the nonterminal symbol then we can use the rule to turn into . We can then apply

one of the two later rules. For example, if we apply to the first we get . If we then apply to the

second we get . Since both and are terminal symbols, and in context-free grammars terminal

symbols never appear on the left hand side of a production rule, there are no more rules that can

be applied. This same process can be used, applying the second two rules in different orders in

order to get all possible strings within our simple context-free grammar.

https://en.wikipedia.org/wiki/Constituent_%28linguistics%29
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Nonterminal

Languages generated by context-free grammars are known as context-free languages (CFL).

Different context-free grammars can generate the same context-free language. It is important to

distinguish the properties of the language (intrinsic properties) from the properties of a particular

grammar (extrinsic properties). The language equality question (do two given context-free

grammars generate the same language?) is undecidable.

Context-free grammars arise in linguistics where they are used to describe the structure of

sentences and words in a natural language, and they were in fact invented by the linguist Noam

Chomsky for this purpose, but have not really lived up to their original expectation. By contrast,

in computer science, as the use of recursively-defined concepts increased, they were used more

and more. In an early application, grammars are used to describe the structure of programming

languages. In a newer application, they are used in an essential part of the Extensible Markup

Language (XML) called the Document Type Definition.[2]

In linguistics, some authors use the term phrase structure grammar to refer to context-free

grammars, whereby phrase-structure grammars are distinct from dependency grammars. In

computer science, a popular notation for context-free grammars is Backus–Naur form, or BNF.

Ambiguity in Grammars and Languages:

If a context free grammar G has more than one derivation tree for some string w ∈ L(G), it is

called an ambiguous grammar. There exist multiple right-most or left-most derivations for

some string generated from that grammar.

Problem

Check whether the grammar G with production rules −

X → X+X | X*X |X| a is ambiguous or not.

Solution

Let’s find out the derivation tree for the string "a+a*a". It has two leftmost derivations.

Derivation 1 − X → X+X → a +X → a+ X*X → a+a*X → a+a*a

Parse tree 1 −

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Context-free_grammar#Language_equality
https://en.wikipedia.org/wiki/Decidability_%28logic%29
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Extensible_Markup_Language
https://en.wikipedia.org/wiki/Extensible_Markup_Language
https://en.wikipedia.org/wiki/Document_Type_Definition
https://en.wikipedia.org/wiki/Context-free_grammar#cite_note-2
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Phrase_structure_grammar
https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Derivation 2 − X → X*X → X+X*X → a+ X*X → a+a*X → a+a*a

Parse tree 2 −

Since there are two parse trees for a single string "a+a*a", the grammar G is ambiguous.

Push Down Automata:

In computer science, a pushdown automaton (PDA) is a type of automaton that employs a

stack.

Pushdown automata are used in theories about what can be computed by machines. They are

more capable than finite-state machines but less capable than Turing machines. Deterministic

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Stack_%28data_structure%29
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Deterministic_pushdown_automata

pushdown automata can recognize all deterministic context-free languages while

nondeterministic ones can recognize all context-free languages, with the former often used in

parser design.

The term "pushdown" refers to the fact that the stack can be regarded as being "pushed down"

like a tray dispenser at a cafeteria, since the operations never work on elements other than the top

element. A stack automaton, by contrast, does allow access to and operations on deeper

elements. Stack automata can recognize a strictly larger set of languages than pushdown

automata. A nested stack automaton allows full access, and also allows stacked values to be

entire sub-stacks rather than just single finite symbols.

Informal description

A diagram of a pushdown automaton

A finite state machine just looks at the input signal and the current state: it has no stack to work

with. It chooses a new state, the result of following the transition. A pushdown automaton

(PDA) differs from a finite state machine in two ways:

1. It can use the top of the stack to decide which transition to take.

2. It can manipulate the stack as part of performing a transition.

A pushdown automaton reads a given input string from left to right. In each step, it chooses a

transition by indexing a table by input symbol, current state, and the symbol at the top of the

stack. A pushdown automaton can also manipulate the stack, as part of performing a transition.

The manipulation can be to push a particular symbol to the top of the stack, or to pop off the top

of the stack. The automaton can alternatively ignore the stack, and leave it as it is.

Put together: Given an input symbol, current state, and stack symbol, the automaton can follow a

transition to another state, and optionally manipulate (push or pop) the stack.

If, in every situation, at most one such transition action is possible, then the automaton is called a

deterministic pushdown automaton (DPDA). In general, if several actions are possible, then

the automaton is called a general, or nondeterministic, PDA. A given input string may drive a

https://en.wikipedia.org/wiki/Deterministic_pushdown_automata
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Nested_stack_automaton
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton

nondeterministic pushdown automaton to one of several configuration sequences; if one of them

leads to an accepting configuration after reading the complete input string, the latter is said to

belong to the language accepted by the automaton.

Definition of the Pushdown Automaton:

Formal definition

We use standard formal language notation: denotes the set of strings over alphabet and denotes

the empty string.

A PDA is formally defined as a 7-tuple:

where is a finite set of states

• is a finite set which is called the input alphabet

• is a finite set which is called the stack alphabet

• is a finite subset of , the transition relation.

• is the start state

• is the initial stack symbol

• is the set of accepting states

An element is a transition of . It has the intended meaning that , in state , on the input and with as

topmost stack symbol, may read , change the state to , pop , replacing it by pushing . The

component of the transition relation is used to formalize that the PDA can either read a letter

from the input, or proceed leaving the input untouched.

In many texts the transition relation is replaced by an (equivalent) formalization, where

• is the transition function, mapping into finite subsets of

Here contains all possible actions in state with on the stack, while reading on the input. One

writes for example precisely when because . Note that finite in this definition is essential.

Computations

https://en.wikipedia.org/wiki/Empty_string

a step of the pushdown automaton

In order to formalize the semantics of the pushdown automaton a description of the current

situation is introduced. Any 3-tuple is called an instantaneous description (ID) of , which

includes the current state, the part of the input tape that has not been read, and the contents of the

stack (topmost symbol written first). The transition relation defines the step-relation of on

instantaneous descriptions. For instruction there exists a step , for every and every .In general

pushdown automata are nondeterministic meaning that in a given instantaneous description there

may be several possible steps. Any of these steps can be chosen in a computation. With the

above definition in each step always a single symbol (top of the stack) is popped, replacing it

with as many symbols as necessary. As a consequence no step is defined when the stack is

empty.Computations of the pushdown automaton are sequences of steps. The computation starts

in the initial state with the initial stack symbol on the stack, and a string on the input tape, thus

with initial description . There are two modes of accepting. The pushdown automaton either

accepts by final state, which means after reading its input the automaton reaches an accepting

state (in), or it accepts by empty stack (), which means after reading its input the automaton

empties its stack. The first acceptance mode uses the internal memory (state), the second the

external memory (stack).

Formally one defines

1. with and (final state)

2. with (empty stack)

Here represents the reflexive and transitive closure of the step relation meaning any number of

consecutive steps (zero, one or more).For each single pushdown automaton these two languages

need to have no relation: they may be equal but usually this is not the case. A specification of the

automaton should also include the intended mode of acceptance. Taken over all pushdown

automata both acceptance conditions define the same family of languages.

Theorem. For each pushdown automaton one may construct a pushdown automaton such that ,

and vice versa, for each pushdown automaton one may construct a pushdown automaton such

that

Example

The following is the formal description of the PDA which recognizes the language by final state:

PDA for

(by final state), where

• states:

• input alphabet:

• stack alphabet:

• start state:

• start stack symbol: Z

• accepting states:

The transition relation consists of the following six instructions:,,,,, and.In words, the first two

instructions say that in state p any time the symbol 0 is read, one A is pushed onto the stack.

Pushing symbol A on top of another A is formalized as replacing top A by AA (and similarly for

pushing symbol A on top of a Z).The third and fourth instructions say that, at any moment the

automaton may move from state p to state q.The fifth instruction says that in state q, for each

symbol 1 read, one A is popped.

Finally, the sixth instruction says that the machine may move from state q to accepting state r

only when the stack consists of a single Z.There seems to be no generally used representation for

PDA. Here we have depicted the instruction by an edge from state p to state q labelled by (read

a; replace A by).

Understanding the computation process

Accepting computation for 0011

The following illustrates how the above PDA computes on different input strings. The subscript

M from the step symbol is here omitted.

a. Input string = 0011. There are various computations, depending on the moment the move

from state p to state q is made. Only one of these is accepting.

i. The final state is accepting, but the input is not accepted this way as it has not

been read.

ii. No further steps possible.

iii. Accepting computation: ends in accepting state, while complete input has been

read.

b. Input string = 00111. Again there are various computations. None of these is accepting.

i. The final state is accepting, but the input is not accepted this way as it has not

been read.

ii. No further steps possible.

iii. The final state is accepting, but the input is not accepted this way as it has not

been (completely) read.

Description

A pushdown automaton (PDA) is a finite state machine which has an additional stack storage.

The transitions a machine makes are based not only on the input and current state, but also on the

stack. The formal definition (in our textbook) is that a PDA is this:

M = (K,Σ,Γ,Δ,s,F) where K = finite state set

• Σ = finite input alphabet

• Γ = finite stack alphabet

• s ∈ K: start state

• F ⊆ K: final states

• The transition relation, Δ is a finite subset of (K×(Σ𝖴{ε})×Γ*) × (K×Γ*)

We have to have the finite qualifier because the full subset is infinite by virtue of the Γ*

component. The meaning of the transition relation is that, for σ ∈ Σ, if ((p,σ,α),(q,β)) ∈ Δ:

• the current state is p

• the current input symbol is σ

• the string at the top of the stack is α then:

• the new state is q

• replace α on the top of the stack by β (pop the α and push the β)

Otherwise, if ((p,ε,α),(q,β)) ∈ Δ, this means that if

• the current state is p

• the string at the top of the stack is α then (not consulting the input symbol), we can

• change the state is q

• replace α on the top of the stack by β

Machine Configuration, yields, acceptance

A machine configuration is an element of K×Σ*×Γ*.

(p,w,γ) = current state, unprocessed input, stack content)

We define the usual yields relationships:

(p,σw,αγ) ⊢ (q,w,βγ) if ((p,σ,α),(q,β)) ∈ Δ or (p,w,αγ) ⊢ (q,w,βγ) if ((p,ε,α),(q,β)) ∈ Δ

As expected, ⊢* is the reflexive, transitive closure of ⊢.

A string w is accepted by the PDA if

(s,w,ε) ⊢* (f,ε,ε)

Namely, from the start state with empty stack, we

• process the entire string,

• end in a final state

• end with an empty stack.

The language accepted by a PDA M, L(M), is the set of all accepted strings.

The empty stack is our key new requirement relative to finite state machines. The examples that

we generate have very few states; in general, there is so much more control from using the stack

memory. Acceptance by empty stack only or final state only is addressed in problems 3.3.3 and

3.3.4.

Graphical Representation and ε-transition

The book does not indicate so, but there is a graphical representation of PDAs. A transition

((p,x,α),(q,β)) where x = ε or x ∈ Σ would be depicted like this (respectively):

 or

The stack usage represented by

α/β

represents these actions:

• the top of the stack must match α

• if we make the transition, pop α and push β

A PDA is non-deterministic. There are several forms on non-determinism in the description:

• Δ is a relation

• there are ε-transitions in terms of the input

• there are ε-transitions in terms of the stack contents

The true PDA ε-transition, in the sense of being equivalent to the NFA ε-transition is this:

because it consults neither the input, nor the stack and will leave the previous configuration

intact.

Palindrome examples

These are examples 3.3.1 and 3.3.2 in the textbook. The first is this:

{x ∈ {a,b,c}* : x = wcwR for w ∈ {a,b}*}

The machine pushes a's and b's in state s, makes a transition to f when it sees the middle marker,

c, and then matches input symbols with those on the stack and pops the stack symbol. Non-

accepting string examples are these:

ε in state s

ab in state s with non-empty stack

abcab in state f with unconsumed input and non-empty stack

abcb in state f with non-empty stack

abcbab in state f with unconsumed input and empty stack

Observe that this PDA is deterministic in the sense that there are no choices in transitions.

The second example is:

{x ∈ {a,b}* : x = wwR for w ∈ {a,b}*}

This PDA is identical to the previous

one except for the ε-transition

Nevertheless, there is a significant difference in that this PDA must guess when to stop pushing

symbols, jump to the final state and start matching off of the stack. Therefore this machine is

decidedly non-deterministic. In a general programming model (like Turing Machines), we have

the luxury of preprocessing the string to determine its length and thereby knowing when the

middle is coming.

The anbn language

The language is L = { w ∈ {a,b}* : w = anbn, n ≥ 0 }. Here are two PDAs for L:

and

The idea in both of these machines is to stack the a's and match off the b's. The first one is non-

deterministic in the sense that it could prematurely guess that the a's are done and start matching

off b's. The second version is deterministic in that the first b acts as a trigger to start matching

off. Note that we have to make both states final in the second version in order to accept ε.

The equal a's and b's language

This is example 3.3.3 in the textbook. Let us use the convenience notation:

#σ(w) = the number of occurrences of σ in w

The language is L = {w ∈ {a,b}*: #a(w) = #b(w) }. Here is the PDA:

As you can see, most of the activity surrounds the behavior in state q. The idea is have the stack

maintain the excess of one symbol over the other. In order to achieve our goal, we must know

when the stack is empty.

Empty Stack Knowledge

There is no mechanism built into a PDA to determine whether the stack is empty or not. It's

important to realize that the transition:

 x = σ ∈ Σ or ε

means to do so without consulting the stack; it says nothing about whether the stack is empty or

not.

Nevertheless, one can maintain knowledge of an empty stack by using a dedicated stack symbol,

c, representing the "stack bottom" with these properties:

• it is pushed onto an empty stack by a transition from the start state with no other outgoing

or incoming transitions

• it is never removed except by a transition to state with no other outgoing transitions

Behavior of PDA

The three groups of loop transitions in state q represent these respective functions:

• input a with no b's on the stack: push a

• input b with no a's on the stack: push b

• input a with b's on the stack: pop b; or, input b with a's on the stack: pop a

For example if we have seen 5 b's and 3 a's in any order, then the stack should be "bbc". The

transition to the final state represents the only non-determinism in the PDA in that it must guess

when the input is empty in order to pop off the stack bottom.

DPDA/DCFL

The textbook defines DPDAs (Deterministic PDAs) and DCFLs (Deterministic CFLs) in the

introductory part of section 3.7. According to the textbook's definition, a DPDA is a PDA in

which no state p has two different outgoing transitions

((p,x,α),(q,β)) and ((p,x′,α′),(q′,β′))

which are compatible in the sense that both could be applied. A DCFL is basically a language

which accepted by a DPDA, but we need to qualify this further.

We want to argue that the language L = { w ∈ {a,b}* : #a(w) = #b(w)} is deterministic context

free in the sense there is DPDA which accepts it.

In the above PDA, the only non-determinism is the issue of guessing the end of input; however

this form of non-determinism is considered artificial. When one considers whether a language L

supports a DPDA or not, a dedicated end-of-input symbol is always added to strings in the

language.

Formally, a language L over Σ is deterministic context free, or L is a DCFL , if

L$ is accepted by a DPDA M

where $ is a dedicated symbol not belonging to Σ. The significance is that we can make

intelligent usage of the knowledge of the end of input to decide what to do about the stack. In our

case, we would simply replace the transition into the final state by:

With this change, our PDA is now a DPDA:

a*b* examples

Two common variations on a's followed by b's. When they're equal, no stack bottom is

necessary. When they're unequal, you have to be prepared to recognize that the stacked a's have

been completely matched or not.

a. { anbn : n ≥ 0 }

b. { ambn : 0 ≤ m

< n }

Let's look at a few sample runs of (b). The idea is that you cannot enter the final state with an "a"

still on the stack. Once you get to the final state, you can consume remaining b's and end marker.

We can start from state 1 with the stack bottom pushed on:

success: abb

state input stack

1 abb$ c

1 bb$ ac

2 b$ ac

2 $ c

3 ε ε

success: abbbb

state input stack

1 abbbb$ c

1 bbbb$ ac

2 bbb$ ac

2 bb$ c

3 b$ ε

3 $ ε

3 ε ε

(fail: ab)

state input stack

1 ab$ c

1 b$ ac

2 $ ac

(fail: ba)

state input stack

1 ba$ c

2 a$ c

Observe that a string like abbba also fails due to the inability to consume the very last a.

Equivalence of PDA’s and CFG’s:

If a grammar G is context-free, we can build an equivalent nondeterministic PDA which accepts

the language that is produced by the context-free grammar G. A parser can be built for the

grammar G.

Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed

where

L(G) = L(P)

In the next two topics, we will discuss how to convert from PDA to CFG and vice versa.

Algorithm to find PDA corresponding to a given CFG

Input − A CFG, G = (V, T, P, S)

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F)

Step 1 − Convert the productions of the CFG into GNF.

Step 2 − The PDA will have only one state {q}.

Step 3 − The start symbol of CFG will be the start symbol in the PDA.

Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all the

terminals of the CFG will be the input symbols of the PDA.

Step 5 − For each production in the form A → aX where a is terminal and A, X are combination

of terminal and non-terminals, make a transition δ (q, a, A).

Problem

Construct a PDA from the following CFG.

G = ({S, X}, {a, b}, P, S)

where the productions are −

S → XS | ε , A → aXb | Ab | ab

Solution

Let the equivalent PDA,

P = ({q}, {a, b}, {a, b, X, S}, δ, q, S)

where δ −

δ(q, ε , S) = {(q, XS), (q, ε)}

δ(q, ε , X) = {(q, aXb), (q, Xb), (q, ab)}

δ(q, a, a) = {(q, ε)}

δ(q, 1, 1) = {(q, ε)}

Algorithm to find CFG corresponding to a given PDA

Input − A CFG, G = (V, T, P, S)

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) such that the non- terminals of the grammar

G will be {Xwx | w,x ∈ Q} and the start state will be Aq0,F.

Step 1 − For every w, x, y, z ∈ Q, m ∈ S and a, b ∈ ∑, if δ (w, a, ε) contains (y, m) and (z, b, m)

contains (x, ε), add the production rule Xwx → a Xyzb in grammar G.

Step 2 − For every w, x, y, z ∈ Q, add the production rule Xwx → XwyXyx in grammar G.

Step 3 − For w ∈ Q, add the production rule Xww → ε in grammar G.

Parsing is used to derive a string using the production rules of a grammar. It is used to check the

acceptability of a string. Compiler is used to check whether or not a string is syntactically

correct. A parser takes the inputs and builds a parse tree.

A parser can be of two types −

• Top-Down Parser − Top-down parsing starts from the top with the start-symbol and

derives a string using a parse tree.

• Bottom-Up Parser − Bottom-up parsing starts from the bottom with the string and

comes to the start symbol using a parse tree.

Design of Top-Down Parser

For top-down parsing, a PDA has the following four types of transitions −

• Pop the non-terminal on the left hand side of the production at the top of the stack and

push its right-hand side string.

• If the top symbol of the stack matches with the input symbol being read, pop it.

• Push the start symbol ‘S’ into the stack.

• If the input string is fully read and the stack is empty, go to the final state ‘F’.

Example

Design a top-down parser for the expression "x+y*z" for the grammar G with the following

production rules −

P: S → S+X | X, X → X*Y | Y, Y → (S) | id

Solution

If the PDA is (Q, ∑, S, δ, q0, I, F), then the top-down parsing is −

(x+y*z, I) ⊢(x +y*z, SI) ⊢ (x+y*z, S+XI) ⊢(x+y*z, X+XI)

⊢(x+y*z, Y+X I) ⊢(x+y*z, x+XI) ⊢(+y*z, +XI) ⊢ (y*z, XI)

⊢(y*z, X*YI) ⊢(y*z, y*YI) ⊢(*z,*YI) ⊢(z, YI) ⊢(z, zI) ⊢(ε, I)

Design of a Bottom-Up Parser

For bottom-up parsing, a PDA has the following four types of transitions −

• Push the current input symbol into the stack.

• Replace the right-hand side of a production at the top of the stack with its left-hand side.

• If the top of the stack element matches with the current input symbol, pop it.

• If the input string is fully read and only if the start symbol ‘S’ remains in the stack, pop it

and go to the final state ‘F’.

Example

Design a top-down parser for the expression "x+y*z" for the grammar G with the following

production rules −

P: S → S+X | X, X → X*Y | Y, Y → (S) | id

Solution

If the PDA is (Q, ∑, S, δ, q0, I, F), then the bottom-up parsing is −

(x+y*z, I) ⊢ (+y*z, xI) ⊢ (+y*z, YI) ⊢ (+y*z, XI) ⊢ (+y*z, SI)

⊢(y*z, +SI) ⊢ (*z, y+SI) ⊢ (*z, Y+SI) ⊢ (*z, X+SI) ⊢ (z, *X+SI)

⊢ (ε, z*X+SI) ⊢ (ε, Y*X+SI) ⊢ (ε, X+SI) ⊢ (ε, SI)

Deterministic Pushdown Automata:

In automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the

pushdown automaton. The class of deterministic pushdown automata accepts the deterministic

context-free languages, a proper subset of context-free languages.

https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Context-free_language

Machine transitions are based on the current state and input symbol, and also the current topmost

symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect.

Machine actions include pushing, popping, or replacing the stack top. A deterministic pushdown

automaton has at most one legal transition for the same combination of input symbol, state, and

top stack symbol. This is where it differs from the nondeterministic pushdown automaton.

Formal definition

A (not necessarily deterministic) PDA can be defined as a 7-tuple:

Where is a finite set of states

• is a finite set of input symbols

• is a finite set of stack symbols

• is the start state

• is the starting stack symbol

• , where is the set of accepting states

• is a transition function, wherewhere is the Kleene star, meaning that is "the set of all finite strings

(including the empty string) of elements of ", denotes the empty string, and is the power set of a

set .M is deterministic if it satisfies both the following conditions:

• For any , the set has at most one element.

• For any , if , then for every

There are two possible acceptance criteria: acceptance by empty stack and acceptance by final

state. The two are not equivalent for the deterministic pushdown automaton (although they are for

the non-deterministic pushdown automaton). The languages accepted by empty stack are those

languages that are accepted by final state and are prefix-free: no word in the language is the prefix

of another word in the language.

The usual acceptance criterion is final state, and it is this acceptance criterion which is used to

define the deterministic context-free languages.

Languages recognized

If is a language accepted by a PDA , it can also be accepted by a DPDA if and only if there is a

single computation from the initial configuration until an accepting one for all strings belonging

to . If can be accepted by a PDA it is a context free language and if it can be accepted by a DPDA

it is a deterministic context-free language.

Not all context-free languages are deterministic. This makes the DPDA a strictly weaker device

than the PDA. For example, the language of even-length palindromes on the alphabet of 0 and 1

https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Power_set
https://en.wikipedia.org/wiki/Deterministic_context-free_languages
https://en.wikipedia.org/wiki/Palindrome

has the context-free grammar S → 0S0 | 1S1 | ε. An arbitrary string of this language cannot be

parsed without reading all its letters first which means that a pushdown automaton has to try

alternative state transitions to accommodate for the different possible lengths of a semi-parsed

string.

Restricting the DPDA to a single state reduces the class of languages accepted to the LL(1)

languages. In the case of a PDA, this restriction has no effect on the class of languages accepted.

https://en.wikipedia.org/wiki/LL%281%29_language
https://en.wikipedia.org/wiki/LL%281%29_language

MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND

SCIENCE

LECTURE NOTES

On

CS501PC: FORMAL LANGUAGES AND

AUTOMATA THEORY

III Year B.Tech. CSE/IT I-Sem

(Jntuh-R18)

CS501PC: FORMAL LANGUAGES AND AUTOMATA

THEORY

III Year B.Tech. CSE I-Sem L T P C

3 0 0 3

Course Objectives

1. To provide introduction to some of the central ideas of theoretical computer

science from the perspective of formal languages.

2. To introduce the fundamental concepts of formal languages, grammars and automata
theory.

3. Classify machines by their power to recognize languages.

4. Employ finite state machines to solve problems in computing.

5. To understand deterministic and non-deterministic machines.

6. To understand the differences between decidability and undecidability.

Course Outcomes

1. Able to understand the concept of abstract machines and their power to recognize

the languages.

2. Able to employ finite state machines for modeling and solving computing problems.

3. Able to design context free grammars for formal languages.

4. Able to distinguish between decidability and undecidability.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity,

the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search,

Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The

language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions.

Conversion of NFA to DFA, Moore and Melay machines

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular

Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to

Regular Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications

of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages,

Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a

Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential

Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in

Grammars and Languages. Push Down Automata: Definition of the Pushdown

Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final

state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA,

From PDA to CFG

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-

Productions. Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma,

Applications Closure Properties of Context-Free Languages: Closure properties of

CFL’s, Decision Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous

description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An

Undecidable Problem That is RE, Undecidable Problems about Turing Machines,

Recursive languages, Properties of recursive languages, Post's Correspondence Problem,

Modified Post Correspondence problem, Other Undecidable Problems, Counter ma

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John

E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.

2. Theory of Computer Science – Automata languages and computation, Mishra and

Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.

3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge

University Press.

4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage

Learning.

5. Introduction to Formal languages Automata Theory and Computation Kamala

Krithivasan, Rama R, Pearson.

UNIT-IV

Normal Forms of Context-Free Grammars

Chomsky Normal Form
A grammar is in Chomsky Normal Form if all productions are of the form

A BC

or

A a

where A, B, and C are variables and a is a terminal. Any context-free grammar that does not contain

can be put into Chomsky Normal Form.

(Most textbook authors also allow the production S so long as S does not appear on the

right hand side of any production.)

Chomsky Normal Form is particularly useful for programs that have to manipulate grammars.

Greibach Normal Form
A grammar is in Greibach Normal Form if all productions are of the form

A ax

where a is a terminal and x V*.

Grammars in Greibach Normal Form are typically ugly and much longer than the cfg from which

they were derived. Greibach Normal Form is useful for proving the equivalence of cfgs and

npdas. When we discuss converting a cfg to an npda, or vice versa, we will use Greibach Normal

Form.

Pumping lemma for context-free languages

In computer science, in particular in formal language theory, the pumping lemma for context-

free languages, also known as the Bar-Hillel[clarification needed] lemma, is a lemma that gives a

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Formal_language_theory
https://en.wikipedia.org/wiki/Yehoshua_Bar-Hillel
https://en.wikipedia.org/wiki/Lemma_%28mathematics%29

property shared by all context-free languages and generalizes the pumping lemma for regular

languages. As the pumping lemma does not suffice to guarantee that a language is context-free

there are more stringent necessary conditions, such as Ogden's lemma.

Formal statement

Proof idea: If s is sufficiently long, its derivation tree w.r.t. a Chomsky normal form grammar must contain

some nonterminal N twice on some tree path (upper picture). Repeating n times the derivation part N ⇒...⇒

vNx obtains a derivation for uvnwxny (lower left and right picture for n=0 and 2, respectively).

If a language L is context-free, then there exists some integer p ≥ 1 (called a "pumping length"[1])

such that every string s in L that has a length of p or more symbols (i.e. with |s| ≥ p) can be written

as

s = uvwxy

with substrings u, v, w, x and y, such that

1. |vwx| ≤ p,

2. |vx| ≥ 1, and

3. uvnwxny ∈ L for all n ≥ 0.

Below is a formal expression of the Pumping Lemma.

https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
https://en.wikipedia.org/wiki/Ogden%27s_lemma
https://en.wikipedia.org/wiki/Derivation_tree
https://en.wikipedia.org/wiki/Chomsky_normal_form
https://en.wikipedia.org/wiki/Context-free_grammar#Formal_definitions
https://en.wikipedia.org/wiki/Tree_path
https://en.wikipedia.org/wiki/Pumping_lemma_for_context-free_languages#cite_note-BLRS90-1
https://en.wikipedia.org/wiki/String_length
https://en.wikipedia.org/wiki/Substring

Informal statement and explanation

The pumping lemma for context-free languages (called just "the pumping lemma" for the rest of

this article) describes a property that all context-free languages are guaranteed to have.

The property is a property of all strings in the language that are of length at least p, where p is a

constant—called the pumping length—that varies between context-free languages.

Say s is a string of length at least p that is in the language.

The pumping lemma states that s can be split into five substrings, s = uvwxy, where vx is non-

empty and the length of vwx is at most p, such that repeating v and x any (and the same) number

of times in s produces a string that is still in the language (it is possible and often useful to repeat

zero times, which removes v and x from the string). This process of "pumping up" additional copies

of v and x is what gives the pumping lemma its name.

Finite languages (which are regular and hence context-free) obey the pumping lemma trivially by

having p equal to the maximum string length in L plus one. As there are no strings of this length

the pumping lemma is not violated.

Usage of the lemma

The pumping lemma is often used to prove that a given language L is non-context-free, by showing

that arbitrarily long strings s are in L that cannot be "pumped" without producing strings outside

L.

For example, the language L = { anbncn | n > 0 } can be shown to be non-context-free by using the

pumping lemma in a proof by contradiction. First, assume that L is context free. By the pumping

lemma, there exists an integer p which is the pumping length of language L. Consider the string s

= apbpcp in L. The pumping lemma tells us that s can be written in the form s = uvwxy, where u, v,

w, x, and y are substrings, such that |vwx| ≤ p, |vx| ≥ 1, and uviwxiy ∈ L for every integer i ≥ 0. By

the choice of s and the fact that |vwx| ≤ p, it is easily seen that the substring vwx can contain no

more than two distinct symbols. That is, we have one of five possibilities for vwx:

1. vwx = aj for some j ≤ p.

2. vwx = ajbk for some j and k with j+k ≤ p.

2.

3. vwx = bj for some j ≤ p.

4. vwx = bjck for some j and k with j+k ≤ p.

5. vwx = cj for some j ≤ p.

https://en.wikipedia.org/wiki/Finite_language
https://en.wikipedia.org/wiki/Proof_by_contradiction

For each case, it is easily verified that uviwxiy does not contain equal numbers of each letter for

any i ≠ 1. Thus, uv2wx2y does not have the form aibici. This contradicts the definition of L.

Therefore, our initial assumption that L is context free must be false.

While the pumping lemma is often a useful tool to prove that a given language is not context-free,

it does not give a complete characterization of the context-free languages. If a language does not

satisfy the condition given by the pumping lemma, we have established that it is not context-free.

On the other hand, there are languages that are not context-free, but still satisfy the condition given

by the pumping lemma, for example L = { bjckdl | j, k, l ∈ ℕ } 𝖴 { aibjcjdj | i, j ∈ ℕ, i≥1 }: for

s=bjckdl with e.g. j≥1 choose vwx to consist only of b’s, for s=aibjcjdj choose vwx to consist only

of a’s; in both cases all pumped strings are still in L.

The Closure of Context-Free Languages

We have seen that the regular languages are closed under common set-theoretic operations; the

same, however, does not hold true for context-free languages.

Lemma: The context-free languages are closed under union, concatenation and Kleene closure.

That is, if and are context-free languages, so are , and .

Proof:

We will prove that the languages are closed by creating the appropriate grammars.

Suppose we have two context-free languages, represented by grammars with start symbols

and respectively. First of all, rename all the terminal symbols in the second grammar so that

they don't conflict with those in the first. Then:

• To get the union, add the rule

• To get the concatenation, add the rule

• To get the Kleene Closure of , add the rule to the grammar for .

Lemma: The context-free languages are not closed under intersection

That is, if and are context-free languages, it it not always true that is also.

Proof:

We will prove the non-closure of intersection by exhibiting a counter-example.

Consider the following two languages:

We can prove that these are context-free by giving their grammars:

The intersection of these languages is:

We proved in the last section that this language is not context-free.

Lemma: The context-free languages are not closed under complementation.

That is, if is a context-free language, it it not always true that is also.

Proof: (By contradiction)

Suppose that context-free languages are closed under complementation.

Then if and are context-free languages, so are and . Since we have proved closure

under union, must also be context-free, and, by our assumption, so must its

complement .

However, by de Morgan's laws (for sets), , so this must also be a

context-free language.

Since our choice of and was arbitrary, we have contradicted the non-closure of

intersection, and have thus proved the lemma.

Decision Properties

Now we consider some important questions for which algorithms exist to answer the question/

Is a given string in a CFL?

Given a string w, is it in a given CFL?

If we are given the CFL as a PDA, we can answer this ismply by executing the PDA.

If we are given the language as a grammar, we can either

• Convert the grammar to a PDA and execute the PDA, or

• Convert the grammar to Chomsky Normal Form and parse the string to find a derivation

for it.

It may not be obvious that our procedures for finding derivations will always terminate. We have

seen that, when finding a derivation, we have choices as to which variable to replace and which

production to use in the replacement. However,

• We have previously noted that if a string is in the language, then it will have a leftmost

derivation. So we can systematically always choose to replace the leftmost variable.

• That leaves the choice of production. We can systematically try all available choices, in a

form of backtracking.

This terminates because we only have a finite number of productions to choose among,

and one of the key properties of Chomsky Normal Forms is that each derivation step

either increases the total number of symbols by one or leaves the total number of symbols

unchanged while replacing a variable by a terminal. So any time the total number of

symbols in a derived string exceeds the length of the string we are trying to derive, we

know we have chosen an incorrect production somewhere along the way and can

backtrack and try a different one.

Actually, we can do better than that. The CYK algorithm can parse a string wfor a Chomsky

Normal Form grammar in O(|w|3) time.

Is a CFL empty?

We’ve already seen how to detect whether a variable is nullable.

We apply that test and determine if the grammar’s start symbol is nullable.

https://www.cs.odu.edu/~zeil/cs361/latest/Public/styles/index.html#backtracking

These are not decision properties for CFLs

No algorithm exists to determine if

• Two CFLs are the same.
o Note that we were able to determine this for regular languages.

• Two CFLs are disjoint (have no strigns in common).

Closure Properties

Substitution

Given a CFG G, if we replace each terminal symbol by a set of strings that is itself a CFL, the

result is still a CFL.

Example 3: Expressions over Mirrors

Here is a grammar for simple expressions: EEEEII→I→E+E→E∗E→(E)→a→b

Here is our grammar for wwR: SSS→0S0→1S1→ϵ

Now, suppose that I wanted an expression language in which, instead of the variable name “a”, I

could use any mirror-imaged string of 0’s and 1’s.

All I really have to do is to change ‘a’ in the first grammar to a variable, make that variable the

new starting symbol for the wwR

grammar, then combine the two grammars:

EEEEIISSS→I→E+E→E∗E→(E)→a→S→0S0→1S1→ϵ

It’s pretty obvious that this is still a CFG, so the resulting language is still a CFL.

Closure Under Union

Suppose you have CFLs L1 and L2.

Consider a language L={1,2}. This is clearly a CFL as well.Now substitute L1 for 1 in L and L2

for 2 in L. The resulting L-with-substitutions accepts all strings that are in L1 or L2, in other

words L1𝖴L2.

Other Closure Properties

Similar substitutions allow us to quickly show that the CFLs are closed under concatenation,

Kleene closure, and homomorphisms.

CFLS are not closed under intersection and difference.

• But the difference of a CFL and a regular language is still a CFL.

CFLs are closed under reversal. (No surprise, given the stack-nature of PDAs.)

Running time of conversions to Chomsky Normal Form:

A CFG is in Chomsky Normal Form if the Productions are in the following forms −

• A → a
• A → BC
• S → ε

where A, B, and C are non-terminals and a is terminal.

Algorithm to Convert into Chomsky Normal Form −

Step 1 − If the start symbol S occurs on some right side, create a new start symbol S’ and a new

production S’→ S.

Step 2 − Remove Null productions. (Using the Null production removal algorithm discussed

earlier)

Step 3 − Remove unit productions. (Using the Unit production removal algorithm discussed

earlier)

Step 4 − Replace each production A → B1…Bn where n > 2 with A → B1C where C → B2

…Bn. Repeat this step for all productions having two or more symbols in the right side.

Step 5 − If the right side of any production is in the form A → aB where a is a terminal and A, B

are non-terminal, then the production is replaced by A → XB and X → a. Repeat this step for

every production which is in the form A → aB.

Problem

Convert the following CFG into CNF

S → ASA | aB, A → B | S, B → b | ε

Solution

(1) Since S appears in R.H.S, we add a new state S0 and S0→S is added to the production set and

it becomes −

S0→S, S→ ASA | aB, A → B | S, B → b | ∈

(2) Now we will remove the null productions −

B → ∈ and A → ∈

After removing B → ε, the production set becomes −

S0→S, S→ ASA | aB | a, A → B | S | ∈, B → b

After removing A → ∈, the production set becomes −

S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b

(3) Now we will remove the unit productions.

After removing S → S, the production set becomes −

S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b

After removing S0→ S, the production set becomes −

S0→ ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → B | S, B → b

After removing A→ B, the production set becomes −

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → S | b

B → b

After removing A→ S, the production set becomes −

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → b |ASA | aB | a | AS | SA, B → b

(4) Now we will find out more than two variables in the R.H.S

Here, S0→ ASA, S → ASA, A→ ASA violates two Non-terminals in R.H.S.

Hence we will apply step 4 and step 5 to get the following final production set which is in CNF −

S0→ AX | aB | a | AS | SA

S→ AX | aB | a | AS | SA

A → b |AX | aB | a | AS | SA

B → b

X → SA

(5) We have to change the productions S0→ aB, S→ aB, A→ aB

And the final production set becomes −

S0→ AX | YB | a | AS | SA

S→ AX | YB | a | AS | SA

A → b A → b |AX | YB | a | AS | SA

B → b

X → SA

Y → a

Introduction to Turing Machines-Problems That Computers Cannot Solve:

A Turing Machine is an accepting device which accepts the languages (recursively enumerable

set) generated by type 0 grammars. It was invented in 1936 by Alan Turing.

Definition

A Turing Machine (TM) is a mathematical model which consists of an infinite length tape

divided into cells on which input is given. It consists of a head which reads the input tape. A

state register stores the state of the Turing machine. After reading an input symbol, it is replaced

with another symbol, its internal state is changed, and it moves from one cell to the right or left.

If the TM reaches the final state, the input string is accepted, otherwise rejected.

A TM can be formally described as a 7-tuple (Q, X, ∑, δ, q0, B, F) where −

• Q is a finite set of states

• X is the tape alphabet

• ∑ is the input alphabet

• δ is a transition function; δ : Q × X → Q × X × {Left_shift, Right_shift}.

• q0 is the initial state
• B is the blank symbol

• F is the set of final states

Comparison with the previous automaton

The following table shows a comparison of how a Turing machine differs from Finite Automaton

and Pushdown Automaton.

Machine Stack Data Structure Deterministic?

Finite Automaton N.A Yes

Pushdown Automaton Last In First Out(LIFO) No

Turing Machine Infinite tape Yes

Example of Turing machine

Turing machine M = (Q, X, ∑, δ, q0, B, F) with

• Q = {q0, q1, q2, qf}
• X = {a, b}

• ∑ = {1}
• q0 = {q0}
• B = blank symbol
• F = {qf }

δ is given by −

Tape alphabet symbol Present State ‘q0’ Present State ‘q1’ Present State ‘q2’

a 1Rq1 1Lq0 1Lqf

b 1Lq2 1Rq1 1Rqf

Here the transition 1Rq1 implies that the write symbol is 1, the tape moves right, and the next

state is q1. Similarly, the transition 1Lq2 implies that the write symbol is 1, the tape moves left,

and the next state is q2.

Time and Space Complexity of a Turing Machine

For a Turing machine, the time complexity refers to the measure of the number of times the tape

moves when the machine is initialized for some input symbols and the space complexity is the

number of cells of the tape written.

Time complexity all reasonable functions −

T(n) = O(n log n)

TM's space complexity −

S(n) = O(n)

The Turing Machine, Programming Techniques for Turing Machines:

Programming Techniques for Turing Machines 329

Storage in the State 330

- Storage in the State

I\'m terribly confused on how this process works. Can you detail why the transition function is

defined as it is?

A Turing machine has a finite number of states in its CPU. However, the number of states

is not always small (like 6). Like a Pentium chip we can store values in it -- as long as

there are only finite number of them. For example all real computers have registers but

there are only a fixed number of them, AND each register can only hold one of a fixed

(and finite) number of bits.

Example: a simple computer with control unit holding a PC with a 16bit address +

arithmetic unit holding one double length 64 bit Arithmetic Register. This has stores 40

bits of information plus a small internal control state: {fetch, decode, compute, store,

next} perhaps. So we have a finite state machine with 2^80 states!

It is sad that we don't have a high level language for TMs then we could write statements

like

1. x=tape.head; perhaps.

Suppose that we wanted to code (in C++) a TM with states 'q0', 'q1',... plus storage 'x' we

might write code like this

q0: b=tape.head; tape.move_right(); goto q1;

q1: if(tape.head()==B) return FAILS;

if(tape.head()==x) tape.move_right(); goto q1;

...

Example 8.6

I found it very confusing, the idea of storage in states. Could you go over this kind of problem?

And is it beneficial to convey the transition function in table format, as it was done in sections

8.1 and 8.2, for this example and what would the table be in this case?

A typical transition table when data is being stored has entries like this

State Read Next Write Move

(q0,B) 1 (q1,1) 1 R

(q0,B) 0 (q1,0) 0 R

We might interpret this as part of a step that stores the symbol read from the tape in the

CPU. Note: the book uses "[]" where I use "()".

Tabulating the 6 states >< 3 symbols on page 331 is not difficult and may help.

But suppose you have a CPU that has 6 binary flags stored in it plus 3 control states. Now

you have 3*64 states to write down...

Tabulating all possible states is not very helpful for machines with structured or

compound states. ... unless you allow variables and conditions to appear in the state

descriptions AND expressions in the body of the table.

The other thing missing from the table is the documentation that explains what each

transition means.

Multiple Tracks 331

- Multitrack Turing Machine

Can you explain multiple track idea and its relation to the Turing Machine? And maybe show

one example in class?

Key idea: \Gamma is the Cartesian product of a finite number of finite sets. (Cartesian

product works like a struct in C/C++)

For example: computer tape storage is multi-track tape with something like 8 or 9 bits in

each cell.

You can recognise a multi-track machine by looking at the transitions because each will

have tuples as the read and write symbols.

(*,1)/(B,0)->

(*,0)/(B,1)->

(B,0)/(B,0)->

(B,1)/(B,1)->

Suppose that all of the above are on a loop from q to q in a diagram then we have these entries

in the table:

State Next Read Write Move

q (*,1) q (B,0) R

q (*,0) q (B,1) R

q (B,1) q (B,1) R

q (B,0) q (B,0) R

Both have the effect of taking a marked (*) bits and flipping them.

Exercise: complete the \delta descriptions that fit with the above:

o ...
o \delta(q, (*,i)) = (, , R),
o \delta(q, (,i)) = (B,i, R),
o ...

Note the book is using "[]" in place of '()' for tuples. Other books use '<>'!

Error on page 332

In the description of \Sigma does not mention the encoding of "c" as [B,c].

- Multiple Tracks

In example 8.7, i had problem understanding the transition functions, and the duty or

assignment for each part in the function.

Can you explain, what each part of the transition function is supposed to mean or do?

Subroutines 333

Subroutines

Would you please explain a little bit more on figure 8.14 and figure 8.15, on how the subroutine

Copy works?

Exercises for Section 8.3 334

Extensions to the Basic Turing Machine 336

8.4.1 Multitape Turing Machines 336

Note: try not to confuse a multi-tape machine with a multi-track single tape machine!

You can recognize a multitape machine by its table of transitions. Here is a piece of a 2-

tape machine

State Symbol1 Symbol2 New1 New2 Move1 Move2

q0 a b c d L R

...

Which means that in state q0, if the first head sees an "a", and the second head sees a "b"

then it write "c" on tape 1 and moves that head left, and it also writes "d" on tape 2 and

moves that head right. Notice that we have two symbols that are read, two are written and

their are two moves.

The transition would be something like:

ab/cd<-->

Figures 8.15 8.16 8.17

Could you please explain the two diagrams step by step. Figure 8.15 and figure 8.16 or 8.17

-- Multitape Turing Machines

Why use multi-tape Turing Machines if they are equivalent to single tape Turing Machines?

They are easier to program. ... and run faster.

Equivalence of One-Tape and Multitape TM's 337

Running Time and the Many-Tapes-to-One Construction 339

- Introduction to Turing Machines

Could you go over how Many-Tapes-to-One Construction is used in the time complexity of a

TM? This wasn't clear to me in the chapter.

Nondeterministic Turing Machines 340

Nondeterministic Turing Machine

Can you clarify the difference between a nondeterministic Turing Machine and a deterministic

one?

- NTM

How does a nondeterministic Turing machine differ from a deterministic Turing machine?

Group discussion: what makes a TM non-deterministic?

The machine has choices in some states and with some symbols: there is at least one

pair of state><head with two (or more) possible transitions. This spawns extra

(hypothetical) threads. The diagram has many arrows leaving a state with the same

symbol on it.

As a result we can't trace a sequence of steps like this

[q0]000 |- 1[q0]00 |- 11[q0]0 |-

because the TM can branch into several possible paths "at once".

One way to handle this is to draw a tree. This can take a lot of paper but works well for

humans. For example, here is a tree of IDs generated by the NTM in the execises for this

section:

Another approach is embedded in the Proof of Theore, 8.11.

Nondeterministic Turing Machines

Please explain the proof of Theorem 8.11 on Nondeterministic Turning Machines?

As an introduction to the proof it is worth doing exercise 8.4.2 using a list of the IDs

reachable from the initial ID. For each of these in turn, add the set of next IDs at the end

of the list and cross out the state they came from from the beginning of the list.

In class we traced several the IDs that could come from the NTM in the dreaded Exercise

8.4.4.

1. Extensions of Turing Machines
1. Multiple tapes

There are several tapes and a head for each tape

The configuration specifies the state, the contents of each tape and the

position of the head for each tape.

2. Two-way infinite tape

The tape is infinite in both directions

3. Multiple heads

There is one tape with several heads.

The configuration specifies the state, the contents of the tape and the

position of each head.

4. Two-dimensional tape

Two more directions for movement: up and down

All these extensions can be simulated on a standard Turing machine. They do not

add to the power of the machine.

Theorem: Any language decided or semidecided, and any function computed by

Turing machines with several tapes, heads, two-way infinite tapes, or multi-

dimensional tapes, can be decided, semidecided , or computed respectively by a

standard Turing machine.

2. Random access Turing machines

The tape in Turing machines is sequential, while real computers have random

access memory.

To implement such capability, Turing machines are augmented with registers to

hold addresses of tape locations.

We assume that each cell of the one-way infinite tape can contain any natural

number.

We have also a fixed number of registers, and each can contain any natural

number.

The transition function is a sequence of instructions (corresponding to a basic

Assembler set of instructions) and the last instruction is "halt".

Thus the transition function simulates a program.

In summary, we have:

o A one-way infinite tape. Each cell can contain any natural number

o A fixed number of registers, each can contain any natural number.

o Transition function - a program (a sequence of instructions, last instruction
is halt)

o Fixed set of instructions:

read/write read from and write onto the tape

load/store read from and write into the registers

add/sub addition and subtraction

half

jump move the head to a specified cell

conditional jump move if the contents of a specified register

is positive/zero

Theorem: Any recursive or recursively enumerable language and any recursive

function

can be decided, semidecided or computed respectively by a random access Turing

machine.

Theorem:

5. Any language decided or semidecided by a random access Turing

machine,

and any function computable by a random access Turing machine,

can be decided, semidecided, or computed respectively by a standard

Turing machine.

6. If the machine halts on an input, the number of steps taken by the standard

Turing machine is

bound by a polynomial in the number of steps of the random access

Turing machine

on the same input.

The second part of the theorem means the following:

If M is a random access Turing machine that performs a

computation

on input of length n in t steps,
then there exists a number k and a standard Turing machine M'

that will do the same computation in O(t + n)k steps.

Nondeterministic Turing machines

Non-determinism means that there may be two or more transitions on one and the same

"state, symbol" pair. The computation looks like a tree - representing the possible choices.

A non-deterministic Turing machine decides a language, or computes a function,

if it halts on all possible inputs.

A string in the language is accepted if at least one of the possible configurations

ends up accepting the input.

A function is computed if all possible computations agree on the output.

Learning goals

• Be able to describe the types of Turing machines and state the related theorems.

Restricted Turing Machines

Semi-infinite Tapes’ TM

⚫ A TM with a semi-infinite tape means that there are no cells to the left of the initial head position.

⚫ A TM with a semi-infinite tape simulates a TM with an infinite tape by using a two-track tape.

A Turing Machine with a semi-infinite tape has a left end but no right end. The left end is limited

with an end marker.

It is a two-track tape −

• Upper track − It represents the cells to the right of the initial head position.

• Lower track − It represents the cells to the left of the initial head position in reverse

order.

The infinite length input string is initially written on the tape in contiguous tape cells.

The machine starts from the initial state q0 and the head scans from the left end marker ‘End’. In

each step, it reads the symbol on the tape under its head. It writes a new symbol on that tape cell

and then it moves the head either into left or right one tape cell. A transition function determines

the actions to be taken.

It has two special states called accept state and reject state. If at any point of time it enters into

the accepted state, the input is accepted and if it enters into the reject state, the input is rejected

by the TM. In some cases, it continues to run infinitely without being accepted or rejected for

some certain input symbols.

Note − Turing machines with semi-infinite tape are equivalent to standard Turing machines.

A linear bounded automaton is a multi-track non-deterministic Turing machine with a tape of

some bounded finite length.

Length = function (Length of the initial input string, constant c)

Here,

Memory information ≤ c × Input information

The computation is restricted to the constant bounded area. The input alphabet contains two

special symbols which serve as left end markers and right end markers which mean the

transitions neither move to the left of the left end marker nor to the right of the right end marker

of the tape.

A linear bounded automaton can be defined as an 8-tuple (Q, X, ∑, q0, ML, MR, δ, F) where −

• Q is a finite set of states

• X is the tape alphabet

• ∑ is the input alphabet

• q0 is the initial state
• ML is the left end marker

• MR is the right end marker where MR ≠ ML

• δ is a transition function which maps each pair (state, tape symbol) to (state, tape symbol,

Constant ‘c’) where c can be 0 or +1 or -1

• F is the set of final states

A deterministic linear bounded automaton is always context-sensitive and the linear bounded

automaton with empty language is undecidable..

A language is called Decidable or Recursive if there is a Turing machine which accepts and

halts on every input string w. Every decidable language is Turing-Acceptable.

A decision problem P is decidable if the language L of all yes instances to P is decidable.

For a decidable language, for each input string, the TM halts either at the accept or the reject

state as depicted in the following diagram −

Example 1

Find out whether the following problem is decidable or not −

Is a number ‘m’ prime?

Solution

Prime numbers = {2, 3, 5, 7, 11, 13, }

Divide the number ‘m’ by all the numbers between ‘2’ and ‘√m’ starting from ‘2’.

If any of these numbers produce a remainder zero, then it goes to the “Rejected state”, otherwise

it goes to the “Accepted state”. So, here the answer could be made by ‘Yes’ or ‘No’.

Hence, it is a decidable problem.

Example 2

Given a regular language L and string w, how can we check if w ∈ L?

Solution

Take the DFA that accepts L and check if w is accepted

Some more decidable problems are −

• Does DFA accept the empty language?
• Is L1 ∩ L2 = ∅ for regular sets?

Note −

• If a language L is decidable, then its complement L' is also decidable

• If a language is decidable, then there is an enumerator for it.

A Turing machine is a mathematical model of computation that defines an abstract machine,

which manipulates symbols on a strip of tape according to a table of rules. Despite the model's

https://en.wikipedia.org/wiki/Mathematical_model_of_computation
https://en.wikipedia.org/wiki/Abstract_machine

simplicity, given any computer algorithm, a Turing machine capable of simulating that

algorithm's logic can be constructed. The machine operates on an infinite memory tape divided

into discrete cells. The machine positions its head over a cell and "reads" (scans) the symbol

there. Then, as per the symbol and its present place in a finite tableof user-specified instructions,

the machine (i) writes a symbol (e.g., a digit or a letter from a finite alphabet) in the cell (some

models allowing symbol erasure or no writing), hen (ii) either moves the tape one cell left or

right (some models allow no motion, some models move the head), then (iii) (as determined by

the observed symbol and the machine's place in the table) either proceeds to a subsequent

instruction or halts the computation.

The Turing machine was invented in 1936 by Alan Turing, who called it an a-machine

(automatic machine. With this model, Turing was able to answer two questions in the negative:

(1) Does a machine exist that can determine whether any arbitrary machine on its tape is

"circular" (e.g., freezes, or fails to continue its computational task); similarly, (2) does a machine

exist that can determine whether any arbitrary machine on its tape ever prints a given symbol.

Thus by providing a mathematical description of a very simple device capable of arbitrary

computations, he was able to prove properties of computation in general—and in particular, the

uncomputability of the Entscheidungsproblem ("decision problem.

Thus, Turing machines prove fundamental limitations on the power of mechanical computation.

While they can express arbitrary computations, their minimalistic design makes them unsuitable

for computation in practice: real-world computers are based on different designs that, unlike

Turing machines, use random-access memory.

Turing completeness is the ability for a system of instructions to simulate a Turing machine. A

programming language that is Turing complete is theoretically capable of expressing all tasks

accomplishable by computers; nearly all programming languages are Turing complete if the

limitations of finite memory are ignored.

Overview

A Turing machine is a general example of a CPU that controls all data manipulation done by a

computer, with the canonical machine using sequential memory to store data. More specifically,

it is a machine (automaton) capable of enumerating some arbitrary subset of valid strings of an

alphabet; these strings are part of a recursively enumerable set. A Turing machine has a tape of

infinite length that enables read and write operations to be performed.

Assuming a black box, the Turing machine cannot know whether it will eventually enumerate

any one specific string of the subset with a given program. This is due to the fact that the halting

problem is unsolvable, which has major implications for the theoretical limits of computing.

https://en.wikipedia.org/wiki/Computer_algorithm
https://en.wikipedia.org/wiki/Discrete_mathematics
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Automaton
https://en.wikipedia.org/wiki/Enumeration
https://en.wikipedia.org/wiki/Alphabet_%28formal_languages%29
https://en.wikipedia.org/wiki/Recursively_enumerable_set
https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Halting_problem

The Turing machine is capable of processing an unrestricted grammar, which further implies that

it is capable of robustly evaluating first-order logic in an infinite number of ways. This is

famously demonstrated through lambda calculus.

A Turing machine that is able to simulate any other Turing machine is called a universal Turing

machine (UTM, or simply a universal machine). A more mathematically oriented definition

with a similar "universal" nature was introduced by Alonzo Church, whose work on lambda

calculus intertwined with Turing's in a formal theory of computation known as the Church–

Turing thesis. The thesis states that Turing machines indeed capture the informal notion of

effective methods in logic and mathematics, and provide a precise definition of an algorithm or

"mechanical procedure". Studying their abstract properties yields many insights into computer

science and complexity theory.

Physical description

In his 1948 essay, "Intelligent Machinery", Turing wrote that his machine consisted of:

...an unlimited memory capacity obtained in the form of an infinite tape marked out into squares,

on each of which a symbol could be printed. At any moment there is one symbol in the machine;

it is called the scanned symbol. The machine can alter the scanned symbol, and its behavior is in

part determined by that symbol, but the symbols on the tape elsewhere do not affect the behavior

of the machine. However, the tape can be moved back and forth through the machine, this being

one of the elementary operations of the machine. Any symbol on the tape may therefore

eventually have an innings.[17] (Turing 1948, p. 3[18])

Informal description
For visualizations of Turing machines, see Turing machine gallery.

The Turing machine mathematically models a machine that mechanically operates on a tape. On

this tape are symbols, which the machine can read and write, one at a time, using a tape head.

Operation is fully determined by a finite set of elementary instructions such as "in state 42, if the

symbol seen is 0, write a 1; if the symbol seen is 1, change into state 17; in state 17, if the

symbol seen is 0, write a 1 and change to state 6;" etc. In the original article ("On Computable

Numbers, with an Application to the Entscheidungsproblem", see also references below), Turing

imagines not a mechanism, but a person whom he calls the "computer", who executes these

deterministic mechanical rules slavishly (or as Turing puts it, "in a desultory manner").

The head is always over a particular square of the tape; only a finite stretch of squares is shown. The

instruction to be performed (q4) is shown over the scanned square. (Drawing after Kleene (1952) p. 375.)

https://en.wikipedia.org/wiki/Unrestricted_grammar
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
https://en.wikipedia.org/wiki/Effective_method
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Turing_machine#cite_note-17
https://en.wikipedia.org/wiki/Turing_machine#cite_note-18
https://en.wikipedia.org/wiki/Turing_machine_gallery
https://en.wikipedia.org/wiki/On_Computable_Numbers%2C_with_an_Application_to_the_Entscheidungsproblem
https://en.wikipedia.org/wiki/On_Computable_Numbers%2C_with_an_Application_to_the_Entscheidungsproblem
https://en.wikipedia.org/wiki/Turing_machine#The_Entscheidungsproblem_%28the_%22decision_problem%22%29%3A_Hilbert%27s_tenth_question_of_1900

Here, the internal state (q1) is shown inside the head, and the illustration describes the tape as being

infinite and pre-filled with "0", the symbol serving as blank. The system's full state (its complete

configuration) consists of the internal state, any non-blank symbols on the tape (in this illustration

"11B"), and the position of the head relative to those symbols including blanks, i.e. "011B". (Drawing

after Minsky (1967) p. 121.)

More precisely, a Turing machine consists of:

• A tape divided into cells, one next to the other. Each cell contains a symbol from some finite

alphabet. The alphabet contains a special blank symbol (here written as '0') and one or more other

symbols. The tape is assumed to be arbitrarily extendable to the left and to the right, i.e., the

Turing machine is always supplied with as much tape as it needs for its computation. Cells that

have not been written before are assumed to be filled with the blank symbol. In some models the

tape has a left end marked with a special symbol; the tape extends or is indefinitely extensible to

the right.

• A head that can read and write symbols on the tape and move the tape left and right one (and

only one) cell at a time. In some models the head moves and the tape is stationary.

• A state register that stores the state of the Turing machine, one of finitely many. Among these is

the special start state with which the state register is initialized. These states, writes Turing,

replace the "state of mind" a person performing computations would ordinarily be in.

• A finite table[19] of instructions[20] that, given the state(qi) the machine is currently in and the
symbol(aj) it is reading on the tape (symbol currently under the head), tells the machine to do the
following in sequence (for the 5-tuple models):

1. Either erase or write a symbol (replacing aj with aj1).

2. Move the head (which is described by dk and can have values: 'L' for one step left or 'R' for one
step right or 'N' for staying in the same place).

3. Assume the same or a new state as prescribed (go to state qi1).

In the 4-tuple models, erasing or writing a symbol (aj1) and moving the head left or right (dk) are

specified as separate instructions. Specifically, the table tells the machine to (ia) erase or write a

symbol or (ib) move the head left or right, and then (ii) assume the same or a new state as

prescribed, but not both actions (ia) and (ib) in the same instruction. In some models, if there is

no entry in the table for the current combination of symbol and state then the machine will halt;

other models require all entries to be filled.

Note that every part of the machine (i.e. its state, symbol-collections, and used tape at any given

time) and its actions (such as printing, erasing and tape motion) is finite, discrete and

distinguishable; it is the unlimited amount of tape and runtime that gives it an unbounded

amount of storage space.

https://en.wikipedia.org/wiki/Turing_machine#cite_note-19
https://en.wikipedia.org/wiki/Turing_machine#cite_note-20
https://en.wikipedia.org/wiki/Computer_storage

Formal definition

Following Hopcroft and Ullman (1979, p. 148), a (one-tape) Turing machine can be formally

defined as a 7-tuple where

• is a finite, non-empty set of states;

• is a finite, non-empty set of tape alphabet symbols;

• is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any step

during the computation);

• is the set of input symbols, that is, the set of symbols allowed to appear in the initial tape

contents;

• is the initial state;

• is the set of final states or accepting states. The initial tape contents is said to be accepted

by if it eventually halts in a state from .

• is a partial function called the transition function, where L is left shift, R is right shift. (A

relatively uncommon variant allows "no shift", say N, as a third element of the latter set.) If

is not defined on the current state and the current tape symbol, then the machine halts;[21]

Anything that operates according to these specifications is a Turing machine.

The 7-tuple for the 3-state busy beaver looks like this (see more about this busy beaver at Turing

machine examples):

• (states);

• (tape alphabet symbols);

• (blank symbol);

• (input symbols);

• (initial state);

• (final states);

• see state-table below (transition function).

https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Partial_function
https://en.wikipedia.org/wiki/State_transition_system
https://en.wikipedia.org/wiki/Turing_machine#cite_note-21
https://en.wikipedia.org/wiki/Busy_beaver
https://en.wikipedia.org/wiki/Turing_machine_examples
https://en.wikipedia.org/wiki/Turing_machine_examples

Initially all tape cells are marked with .

State table for 3 state, 2 symbol busy beaver

Tape symbol

Current state A Current state B Current state C

Write symbol Move tape Next state Write symbol Move tape Next state Write symbol Move tape Next state

0 1 R B 1 L A 1 L B

1 1 L C 1 R B 1 R HALT

Additional details required to visualize or implement Turing

machines

In the words of van Emde Boas (1990), p. 6: "The set-theoretical object [his formal seven-tuple

description similar to the above] provides only partial information on how the machine will

behave and what its computations will look like."

For instance,

• There will need to be many decisions on what the symbols actually look like, and a failproof way

of reading and writing symbols indefinitely.

• The shift left and shift right operations may shift the tape head across the tape, but when actually

building a Turing machine it is more practical to make the tape slide back and forth under the

head instead.

• The tape can be finite, and automatically extended with blanks as needed (which is closest to the

mathematical definition), but it is more common to think of it as stretching infinitely at both ends

and being pre-filled with blanks except on the explicitly given finite fragment the tape head is on.

(This is, of course, not implementable in practice.) The tape cannot be fixed in length, since that

would not correspond to the given definition and would seriously limit the range of computations

the machine can perform to those of a linear bounded automaton.

Alternative definitions

Definitions in literature sometimes differ slightly, to make arguments or proofs easier or clearer,

but this is always done in such a way that the resulting machine has the same computational

power. For example, changing the set to , where N ("None" or "No-operation") would

allow the machine to stay on the same tape cell instead of moving left or right, does not increase

the machine's computational power.

https://en.wikipedia.org/wiki/Linear_bounded_automaton

The most common convention represents each "Turing instruction" in a "Turing table" by one of

nine 5-tuples, per the convention of Turing/Davis (Turing (1936) in The Undecidable, p. 126-127

and Davis (2000) p. 152):

(definition 1): (qi, Sj, Sk/E/N, L/R/N, qm)

(current state qi , symbol scanned Sj , print symbol Sk/erase E/none N , move_tape_one_square

left L/right R/none N , new state qm)

Other authors (Minsky (1967) p. 119, Hopcroft and Ullman (1979) p. 158, Stone (1972) p. 9)

adopt a different convention, with new state qm listed immediately after the scanned symbol Sj:

(definition 2): (qi, Sj, qm, Sk/E/N, L/R/N)

(current state qi , symbol scanned Sj , new state qm , print symbol Sk/erase E/none N ,

move_tape_one_square left L/right R/none N)

For the remainder of this article "definition 1" (the Turing/Davis convention) will be used.

Example: state table for the 3-state 2-symbol busy beaver reduced to 5-tuples

Current state Scanned symbol Print symbol Move tape Final (i.e. next) state 5-tuples

A 0 1 R B (A, 0, 1, R, B)

A 1 1 L C (A, 1, 1, L, C)

B 0 1 L A (B, 0, 1, L, A)

B 1 1 R B (B, 1, 1, R, B)

C 0 1 L B (C, 0, 1, L, B)

C 1 1 N H (C, 1, 1, N, H)

In the following table, Turing's original model allowed only the first three lines that he called

N1, N2, N3 (cf. Turing in The Undecidable, p. 126). He allowed for erasure of the "scanned

square" by naming a 0th symbol S0 = "erase" or "blank", etc. However, he did not allow for non-

printing, so every instruction-line includes "print symbol Sk" or "erase" (cf. footnote 12 in Post

(1947), The Undecidable, p. 300). The abbreviations are Turing's (The Undecidable, p. 119).

Subsequent to Turing's original paper in 1936–1937, machine-models have allowed all nine

possible types of five-tuples:

Current m-

configuration

(Turing state)

Tape

symbol

Print-

operation

Tape-

motion

Final m-

configuration

(Turing state)

5-tuple

(qi, Sj,

5- tuple
4-tuple

comments

"blank" = S0,

1=S1, etc.

"blank" = S0,

1=S1, etc.

"blank" = S0,

1=S1, etc.

(qi, Sj,

Sk, qm)

(qi, Sj,

L, qm)

(qi, Sj,

R, qm)

(qi, Sj,

N, qm)

(qi, Sj,

E, qm)

Any Turing table (list of instructions) can be constructed from the above nine 5-tuples. For

technical reasons, the three non-printing or "N" instructions (4, 5, 6) can usually be dispensed

with. For examples see Turing machine examples.

4 qi

Sj

None N

Left L

qm

(qi, Sj,

N, L,

qm)

5 qi

Sj

None N

Right R

qm

(qi, Sj,

N, R,

qm)

6 qi

Sj

None N

None N

qm

(qi, Sj,

N, N,

Direct "jump"

 qm)

7 qi

Sj

Erase

Left L

qm

(qi, Sj,

E, L,

qm)

8 qi

Sj

Erase

Right R

qm

(qi, Sj,

E, R,

qm)

9 qi

Sj

Erase

None N

qm

(qi, Sj,

E, N,

qm)

N1 qi Sj Print(Sk) Left L qm Sk, L,

qm)

N2 qi

Sj

Print(Sk)

Right R

qm

(qi, Sj,

Sk, R,
 qm)

N3 qi

Sj

Print(Sk)

None N

qm

(qi, Sj,

Sk, N,
 qm)

https://en.wikipedia.org/wiki/Turing_machine_examples

Less frequently the use of 4-tuples are encountered: these represent a further atomization of the

Turing instructions (cf. Post (1947), Boolos & Jeffrey (1974, 1999), Davis-Sigal-Weyuker

(1994)); also see more at Post–Turing machine.

The "state"

The word "state" used in context of Turing machines can be a source of confusion, as it can mean

two things. Most commentators after Turing have used "state" to mean the name/designator of

the current instruction to be performed—i.e. the contents of the state register. But Turing (1936)

made a strong distinction between a record of what he called the machine's "m-configuration",

and the machine's (or person's) "state of progress" through the computation - the current state of

the total system. What Turing called "the state formula" includes both the current instruction and

all the symbols on the tape:

Thus the state of progress of the computation at any stage is completely determined by the note

of instructions and the symbols on the tape. That is, the state of the system may be described by

a single expression (sequence of symbols) consisting of the symbols on the tape followed by Δ

(which we suppose not to appear elsewhere) and then by the note of instructions. This expression

is called the 'state formula'.

— The Undecidable, pp. 139–140, emphasis added

Earlier in his paper Turing carried this even further: he gives an example where he placed a

symbol of the current "m-configuration"—the instruction's label—beneath the scanned square,

together with all the symbols on the tape (The Undecidable, p. 121); this he calls "the complete

configuration" (The Undecidable, p. 118). To print the "complete configuration" on one line, he

places the state-label/m-configuration to the left of the scanned symbol.

A variant of this is seen in Kleene (1952) where Kleene shows how to write the Gödel number of

a machine's "situation": he places the "m-configuration" symbol q4 over the scanned square in

roughly the center of the 6 non-blank squares on the tape (see the Turing-tape figure in this

article) and puts it to the right of the scanned square. But Kleene refers to "q4" itself as "the

machine state" (Kleene, p. 374-375). Hopcroft and Ullman call this composite the "instantaneous

description" and follow the Turing convention of putting the "current state" (instruction-label, m-

configuration) to the left of the scanned symbol (p. 149).

Example: total state of 3-state 2-symbol busy beaver after 3 "moves" (taken from example

"run" in the figure below):

1A1

This means: after three moves the tape has ... 000110000 ... on it, the head is scanning the right-

most 1, and the state is A. Blanks (in this case represented by "0"s) can be part of the total state

as shown here: B01; the tape has a single 1 on it, but the head is scanning the 0 ("blank") to its

left and the state is B.

https://en.wikipedia.org/wiki/Post%E2%80%93Turing_machine
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/G%C3%B6del_number

"State" in the context of Turing machines should be clarified as to which is being described: (i)

the current instruction, or (ii) the list of symbols on the tape together with the current instruction,

or (iii) the list of symbols on the tape together with the current instruction placed to the left of the

scanned symbol or to the right of the scanned symbol.

Turing's biographer Andrew Hodges (1983: 107) has noted and discussed this confusion.

Turing machine "state" diagrams

The table for the 3-state busy beaver ("P" = print/write a "1")

Tape

symbol

Current state A Current state B Current state C

 Write

symbol

Move

tape

Next

state

Write

symbol

Move

tape

Next

state

Write

symbol

Move

tape

Next

state

0 P R B P L A P L B

1 P L C P R B P R HALT

The "3-state busy beaver" Turing machine in a finite state representation. Each circle represents a "state"

of the table—an "m-configuration" or "instruction". "Direction" of a state transition is shown by an

arrow. The label (e.g. 0/P,R) near the outgoing state (at the "tail" of the arrow) specifies the scanned

symbol that causes a particular transition (e.g. 0) followed by a slash /, followed by the subsequent

"behaviors" of the machine, e.g. "P Print" then move tape "R Right". No general accepted format exists.

The convention shown is after McClusky (1965), Booth (1967), Hill, and Peterson (1974).

To the right: the above table as expressed as a "state transition" diagram.

Usually large tables are better left as tables (Booth, p. 74). They are more readily simulated by

computer in tabular form (Booth, p. 74). However, certain concepts—e.g. machines with "reset"

states and machines with repeating patterns (cf. Hill and Peterson p. 244ff)—can be more readily

seen when viewed as a drawing.

https://en.wikipedia.org/wiki/Finite_State_Machine

Whether a drawing represents an improvement on its table must be decided by the reader for the

particular context. See Finite state machine for more.

The evolution of the busy-beaver's computation starts at the top and proceeds to the bottom.

The reader should again be cautioned that such diagrams represent a snapshot of their table

frozen in time, not the course ("trajectory") of a computation through time and space. While

every time the busy beaver machine "runs" it will always follow the same state-trajectory, this is

not true for the "copy" machine that can be provided with variable input "parameters".

The diagram "Progress of the computation" shows the three-state busy beaver's "state"

(instruction) progress through its computation from start to finish. On the far right is the Turing

"complete configuration" (Kleene "situation", Hopcroft–Ullman "instantaneous description") at

each step. If the machine were to be stopped and cleared to blank both the "state register" and

entire tape, these "configurations" could be used to rekindle a computation anywhere in its

progress (cf. Turing (1936) The Undecidable, pp. 139–140).

Models equivalent to the Turing machine model
See also: Turing machine equivalents, Register machine, and Post–Turing machine

Many machines that might be thought to have more computational capability than a simple

universal Turing machine can be shown to have no more power (Hopcroft and Ullman p. 159, cf.

Minsky (1967)). They might compute faster, perhaps, or use less memory, or their instruction set

might be smaller, but they cannot compute more powerfully (i.e. more mathematical functions).

(Recall that the Church–Turing thesis hypothesizes this to be true for any kind of machine: that

anything that can be "computed" can be computed by some Turing machine.)

https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Turing_machine_equivalents
https://en.wikipedia.org/wiki/Register_machine
https://en.wikipedia.org/wiki/Post%E2%80%93Turing_machine
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

A Turing machine is equivalent to a single-stack pushdown automaton (PDA) that has been

made more flexible and concise by relaxing the last-in-first-out requirement of its stack. In

addition, a Turing machine is also equivalent to a two-stack PDA with standard last-in-first-out

semantics, by using one stack to model the right side and the other stack to model the left side of

the Turing machine.

At the other extreme, some very simple models turn out to be Turing-equivalent, i.e. to have the

same computational power as the Turing machine model.

Common equivalent models are the multi-tape Turing machine, multi-track Turing machine,

machines with input and output, and the non-deterministic Turing machine (NDTM) as opposed

to the deterministic Turing machine (DTM) for which the action table has at most one entry for

each combination of symbol and state.

Read-only, right-moving Turing machines are equivalent to NDFAs (as well as DFAs by

conversion using the NDFA to DFA conversion algorithm).

For practical and didactical intentions the equivalent register machine can be used as a usual

assembly programming language.

An interesting question is whether the computation model represented by concrete programming

languages is Turing equivalent. While the computation of a real computer is based on finite

states and thus not capable to simulate a Turing machine, programming languages themselves do

not necessarily have this limitation. Kirner et al., 2009 have shown that among the general-

purpose programming languages some are Turing complete while others are not. For example,

ANSI C is not Turing-equivalent, as all instantiations of ANSI C (different instantiations are

possible as the standard deliberately leaves certain behaviour undefined for legacy reasons)

imply a finite-space memory. This is because the size of memory reference data types is

accessible inside the language. However, other programming languages like Pascal do not have

this feature, which allows them to be Turing complete in principle. It is just Turing complete in

principle, as memory allocation in a programming language is allowed to fail, which means the

programming language can be Turing complete when ignoring failed memory allocations, but

the compiled programs executable on a real computer cannot.

Choice c-machines, oracle o-machines

Early in his paper (1936) Turing makes a distinction between an "automatic machine"—its

"motion ... completely determined by the configuration" and a "choice machine":

...whose motion is only partially determined by the configuration ... When such a machine

reaches one of these ambiguous configurations, it cannot go on until some arbitrary choice has

been made by an external operator. This would be the case if we were using machines to deal

with axiomatic systems.

— The Undecidable, p. 118

https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/LIFO_%28computing%29
https://en.wikipedia.org/wiki/LIFO_%28computing%29
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Multi-tape_Turing_machine
https://en.wikipedia.org/wiki/Multi-track_Turing_machine
https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
https://en.wikipedia.org/wiki/Read-only_right_moving_Turing_machines
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://en.wikipedia.org/wiki/NDFA_to_DFA_conversion_algorithm
https://en.wikipedia.org/wiki/Register_machine
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_languages
https://en.wikipedia.org/wiki/Programming_languages
https://en.wikipedia.org/wiki/ANSI_C
https://en.wikipedia.org/wiki/Pascal_%28programming_language%29
https://en.wikipedia.org/wiki/Memory_allocation

Turing (1936) does not elaborate further except in a footnote in which he describes how to use an

a-machine to "find all the provable formulae of the [Hilbert] calculus" rather than use a choice
machine. He "suppose[s] that the choices are always between two possibilities 0 and 1. Each

proof will then be determined by a sequence of choices i1, i2, ..., in (i1 = 0 or 1, i2 = 0 or 1, ..., in =

0 or 1), and hence the number 2n + i12
n-1 + i22

n-2 + ... +in completely determines the proof. The

automatic machine carries out successively proof 1, proof 2, proof 3, ..." (Footnote ‡, The

Undecidable, p. 138)

This is indeed the technique by which a deterministic (i.e. a-) Turing machine can be used to

mimic the action of a nondeterministic Turing machine; Turing solved the matter in a footnote

and appears to dismiss it from further consideration.

An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o"

while, to complete its calculation, it "awaits the decision" of "the oracle"—an unspecified entity

"apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).

Universal Turing machines
Main article: Universal Turing machine

An implementation of a Turing machine

As Turing wrote in The Undecidable, p. 128 (italics added):

It is possible to invent a single machine which can be used to compute any computable sequence.

If this machine U is supplied with the tape on the beginning of which is written the string of

quintuples separated by semicolons of some computing machine M, then U will compute the

same sequence as M.

This finding is now taken for granted, but at the time (1936) it was considered astonishing. The

model of computation that Turing called his "universal machine"—"U" for short—is considered

by some (cf. Davis (2000)) to have been the fundamental theoretical breakthrough that led to the

notion of the stored-program computer.

Turing's paper ... contains, in essence, the invention of the modern computer and some of the

programming techniques that accompanied it.

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Stored-program_computer

— Minsky (1967), p. 104

In terms of computational complexity, a multi-tape universal Turing machine need only be

slower by logarithmic factor compared to the machines it simulates. This result was obtained in

1966 by F. C. Hennie and R. E. Stearns. (Arora and Barak, 2009, theorem 1.9)

Comparison with real machines

A Turing machine realisation in Lego

It is often said[who?] that Turing machines, unlike simpler automata, are as powerful as real

machines, and are able to execute any operation that a real program can. What is neglected in

this statement is that, because a real machine can only have a finite number of configurations,

this "real machine" is really nothing but a linear bounded automaton. On the other hand, Turing

machines are equivalent to machines that have an unlimited amount of storage space for their

computations. However, Turing machines are not intended to model computers, but rather they

are intended to model computation itself. Historically, computers, which compute only on their

(fixed) internal storage, were developed only later.

There are a number of ways to explain why Turing machines are useful models of real

computers:

1. Anything a real computer can compute, a Turing machine can also compute. For example: "A

Turing machine can simulate any type of subroutine found in programming languages, including

recursive procedures and any of the known parameter-passing mechanisms" (Hopcroft and

Ullman p. 157). A large enough FSA can also model any real computer, disregarding IO. Thus, a

statement about the limitations of Turing machines will also apply to real computers.

2. The difference lies only with the ability of a Turing machine to manipulate an unbounded amount

of data. However, given a finite amount of time, a Turing machine (like a real machine) can only

manipulate a finite amount of data.

3. Like a Turing machine, a real machine can have its storage space enlarged as needed, by

acquiring more disks or other storage media. If the supply of these runs short, the Turing machine

may become less useful as a model. But the fact is that neither Turing machines nor real machines

need astronomical amounts of storage space in order to perform useful computation. The

processing time required is usually much more of a problem.

4. Descriptions of real machine programs using simpler abstract models are often much more

complex than descriptions using Turing machines. For example, a Turing machine describing an

algorithm may have a few hundred states, while the equivalent deterministic finite automaton

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/R._E._Stearns
https://en.wikipedia.org/wiki/Lego
https://en.wikipedia.org/wiki/Linear_bounded_automaton

(DFA) on a given real machine has quadrillions. This makes the DFA representation infeasible to

analyze.

5. Turing machines describe algorithms independent of how much memory they use. There is a limit

to the memory possessed by any current machine, but this limit can rise arbitrarily in time. Turing

machines allow us to make statements about algorithms which will (theoretically) hold forever,

regardless of advances in conventional computing machine architecture.

6. Turing machines simplify the statement of algorithms. Algorithms running on Turing-equivalent

abstract machines are usually more general than their counterparts running on real machines,

because they have arbitrary-precision data types available and never have to deal with unexpected

conditions (including, but not limited to, running out of memory).

An experimental prototype of a Turing machine

Limitations of Turing machines

Computational complexity theory

Further information: Computational complexity theory

A limitation of Turing machines is that they do not model the strengths of a particular

arrangement well. For instance, modern stored-program computers are actually instances of a

more specific form of abstract machine known as the random-access stored-program machine or

RASP machine model. Like the universal Turing machine the RASP stores its "program" in

"memory" external to its finite-state machine's "instructions". Unlike the universal Turing

machine, the RASP has an infinite number of distinguishable, numbered but unbounded

"registers"—memory "cells" that can contain any integer (cf. Elgot and Robinson (1964),

Hartmanis (1971), and in particular Cook-Rechow (1973); references at random access

machine). The RASP's finite-state machine is equipped with the capability for indirect

addressing (e.g. the contents of one register can be used as an address to specify another

register); thus the RASP's "program" can address any register in the register-sequence. The

upshot of this distinction is that there are computational optimizations that can be performed

based on the memory indices, which are not possible in a general Turing machine; thus when

Turing machines are used as the basis for bounding running times, a 'false lower bound' can be

proven on certain algorithms' running times (due to the false simplifying assumption of a Turing

machine). An example of this is binary search, an algorithm that can be shown to perform more

quickly when using the RASP model of computation rather than the Turing machine model.

Concurrency

This section does not cite any sources. Please help improve this section by adding citations to

reliable sources. Unsourced material may be challenged and removed. (April 2015) (Learn how

and when to remove this template message)

https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Random-access_stored-program_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Random_access_machine
https://en.wikipedia.org/wiki/Random_access_machine
https://en.wikipedia.org/wiki/Binary_search
https://en.wikipedia.org/w/index.php?title=Turing_machine&action=edit

Another limitation of Turing machines is that they do not model concurrency well. For example,

there is a bound on the size of integer that can be computed by an always-halting

nondeterministic Turing machine starting on a blank tape. (See article on unbounded

nondeterminism.) By contrast, there are always-halting concurrent systems with no inputs that

can compute an integer of unbounded size. (A process can be created with local storage that is

initialized with a count of 0 that concurrently sends itself both a stop and a go message. When it

receives a go message, it increments its count by 1 and sends itself a go message. When it

receives a stop message, it stops with an unbounded number in its local storage.)

Interaction

In the early days of computing, computer use was typically limited to batch processing, i.e., non-

interactive tasks, each producing output data from given input data. Computability theory, which

studies computability of functions from inputs to outputs, and for which Turing machines were

invented, reflects this practice.

Since the 1970s, interactive use of computers became much more common. In principle, it is

possible to model this by having an external agent read from the tape and write to it at the same

time as a Turing machine, but this rarely matches how interaction actually happens; therefore,

when describing interactivity, alternatives such as I/O automata are usually preferred.

https://en.wikipedia.org/wiki/Unbounded_nondeterminism
https://en.wikipedia.org/wiki/Unbounded_nondeterminism
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Interactivity
https://en.wikipedia.org/wiki/Input/output_automaton

MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND

SCIENCE

LECTURE NOTES

On

CS501PC: FORMAL LANGUAGES AND

AUTOMATA THEORY

III Year B.Tech. CSE/IT I-Sem

(Jntuh-R18)

CS501PC: FORMAL LANGUAGES AND AUTOMATA

THEORY

III Year B.Tech. CSE I-Sem L T P C

3 0 0 3

Course Objectives

1. To provide introduction to some of the central ideas of theoretical computer

science from the perspective of formal languages.

2. To introduce the fundamental concepts of formal languages, grammars and automata
theory.

3. Classify machines by their power to recognize languages.

4. Employ finite state machines to solve problems in computing.

5. To understand deterministic and non-deterministic machines.

6. To understand the differences between decidability and undecidability.

Course Outcomes

1. Able to understand the concept of abstract machines and their power to recognize

the languages.

2. Able to employ finite state machines for modeling and solving computing problems.

3. Able to design context free grammars for formal languages.

4. Able to distinguish between decidability and undecidability.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and

Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages,

Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search,

Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The

language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions.

Conversion of NFA to DFA, Moore and Melay machines

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular

Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to

Regular Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications

of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages,

Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a

Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential

Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in

Grammars and Languages. Push Down Automata: Definition of the Pushdown

Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final

state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA,

From PDA to CFG

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-

Productions. Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma,

Applications Closure Properties of Context-Free Languages: Closure properties of

CFL’s, Decision Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous

description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An

Undecidable Problem That is RE, Undecidable Problems about Turing Machines,

Recursive languages, Properties of recursive languages, Post's Correspondence Problem,

Modified Post Correspondence problem, Other Undecidable Problems, Counter machines

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John

E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.

2. Theory of Computer Science – Automata languages and computation, Mishra and

Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.

3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge

University Press.

4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage

Learning.

5. Introduction to Formal languages Automata Theory and Computation Kamala

Krithivasan, Rama R, Pearson.

UNIT-V

Undecidable problem
From Wikipedia, the free encyclopedia

In computability theory and computational complexity theory, an undecidable problem is a

decision problem for which it is known to be impossible to construct a single algorithm that

always leads to a correct yes-or-no answer. The halting problem is an example: there is no

algorithm that correctly determines whether arbitrary programs eventually halt when run.

Background

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs. Because of

this, it is traditional to define the decision problem equivalently as the set of inputs for which the

problem returns yes. These inputs can be natural numbers, but also other values of some other

kind, such as strings of a formal language. Using some encoding, such as a Gödel numbering,

the strings can be encoded as natural numbers. Thus, a decision problem informally phrased in

terms of a formal language is also equivalent to a set of natural numbers. To keep the formal

definition simple, it is phrased in terms of subsets of the natural numbers.

Formally, a decision problem is a subset of the natural numbers. The corresponding informal

problem is that of deciding whether a given number is in the set. A decision problem A is called

decidable or effectively solvable if A is a recursive set. A problem is called partially decidable,

semi-decidable, solvable, or provable if A is a recursively enumerable set. This means that there

exists an algorithm that halts eventually when the answer is yes but may run for ever if the

answer is no. Partially decidable problems and any other problems that are not decidable are

called undecidable.

Example: the halting problem in computability theory

In computability theory, the halting problem is a decision problem which can be stated as

follows:

Given the description of an arbitrary program and a finite input, decide whether the program

finishes running or will run forever.

Alan Turing proved in 1936 that a general algorithm running on a Turing machine that solves

the halting problem for all possible program-input pairs necessarily cannot exist. Hence, the

halting problem is undecidable for Turing machines.

https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/String_%28computer_science%29
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/G%C3%B6del_numbering
https://en.wikipedia.org/wiki/Natural_numbers
https://en.wikipedia.org/wiki/Recursive_set
https://en.wikipedia.org/wiki/Recursively_enumerable_set
https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Turing_machine

Non-Recursively Enumerable Languages

A language is a subset of *. A language is any subset of *.

We have shown that Turing machines are enumerable. Since recursively enumerable languages

are those whose strings are accepted by a Turing machine, the set of recursively enumerable

languages is also enumerable.

We have shown that the powerset of an infinite set is not enumerable -- that it has more than 0

subsets. Each of these subsets represents a language. Therefore, there must be languages that

are not computable by a Turing machine.

According to Turing's thesis, a Turing machine can compute any effective procedure. Therefore,

there are languages that cannot be defined by any effective procedure.

We can find a non-recursively enumerable language X by diagonalization. Using the

enumerations described earlier, let string i belong to language X if and only if it does not belong

to language i.

Problem. I've just defined a procedure for defining a non-recursively enumerable language. Isn't

this a contradiction?

When Recursively Enumerable Implies

Recursive

Suppose a language L is recursively enumerable. That means there exists a Turing machine T1

that, given any string of the language, halts and accepts that string. (We don't know what it will

do for strings not in the language -- it could reject them, or it could simply never halt.)

Now let's also suppose that the complement of L, -L = {w: w L}, is recursively enumerable.

That means there is some other Turing machine T2 that, given any string of -L, halts and accepts

that string.

Clearly, any string (over the appropriate alphabet) belongs to either L or -L. Hence, any

string will cause either T1 or T2 (or both) to halt. We construct a new Turing machine that

emulates both T1 and T2, alternating moves between them. When either one stops, we can tell (by

whether it accepted or rejected the string) to which language the string belongs. Thus, we have

constructed a Turing machine that, for each input, halts with an answer whether or not the string

belongs to L. Therefore L and -L are recursive languages.

We have just proved the following theorem: If a language and its complement are both

recursively enumerable, then both are recursive.

Recursively Enumerable But Not Recursive

We know that the recursive languages are a subset of the recursively enumerable languages, We

will now show that they are a proper subset.

We have shown how to enumerate strings for a given alphabet, w1, w2, w3, We have also
shown how to enumerate Turing machines, T1, T2, T3, (Recall that each Turing machine

defines a recursively enumerable language.) Consider the language

L = {wi: wi L(Ti)}

A little thought will show that L is itself recursively enumerable. But now consider its

complement:

-L = {wi: wi L(Ti)}

If -L is recursively enumerable, then there must exist a Turing machine that recognizes it. This

Turing machine must be in the enumeration somewhere -- call it Tk.

Does wk belong to L?

• If wk belongs to L then (by the way we have defined L) Tk accepts this string. But Tk accepts only

strings that do not belong to L, so we have a contradiction.

• If wk does not belong to L, then it belongs to -L and is accepted by Tk. But since Tk accepts wk, wk

must belong to L. Again, a contradiction.

We have now defined a recursively enumerable language L and shown by contradiction that -L is

not recursively enumerable.

We mentioned earlier that if a language is recursive, its complement must also be recursive. If

language L above were recursive, then -L would also be recursive, hence recursively

enumerable. But -L is not recursively enumerable; therefore L must not be recursive.

In computability theory and computational complexity theory, an undecidable problem is

a decision problem for which it is known to be impossible to construct a single algorithm

that always leads to a correct yes-or-no answer. The halting problem is an example:

there is no algorithm that correctly determines whether arbitrary programs eventually

halt when run.

https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Halting_problem

For an undecidable language, there is no Turing Machine which accepts the language and

makes a decision for every input string w (TM can make decision for some input string though).

A decision problem P is called “undecidable” if the language L of all yes instances to P is not

decidable. Undecidable languages are not recursive languages, but sometimes, they may be

recursively enumerable languages.

Example

• The halting problem of Turing machine
• The mortality problem

• The mortal matrix problem

• The Post correspondence problem, etc.

Undecidable Problems

• Decida Recall that:

• A language is decidable,

• if there is a Turing machine (decider)

• that accepts the language and halts on every input string ble Languages.

•

• For an undecidable language,

• the corresponding problem is

• undecidable (unsolvable):

i xi yi

1

2

3

• there is no Turing Machine (Algorithm)

• that gives an answer (yes or no)

• for every input instance

• Post's Correspondence Problem (PCP)

• A post correspondence system consists of a finite set of ordered

pairs where for some alphabet .

• Any sequence of numbers
• is called a solution to a Post Correspondence System.

• The Post's Correspondence Problem is the problem of

determining whether a Post Correspondence system has a solutions.
• Example 1 : Consider the post correspondence system

• The list 1,2,1,3 is a solution to it.
• Because

•

•

•

•

•

• (A post correspondence system is also denoted as an instance of the PCP)
• Example 2 : The following PCP instance has no solution

i xi yi

1

2

•

•

•

•

•

• his can be proved as follows. cannot be chosen at the start, since than the LHS

and RHS would differ in the first symbol (in LHS and in RHS). So, we must start

with . The next pair must be so that the 3 rd symbol in the RHS becomes

identical to that of the LHS, which is a . After this step, LHS and RHS are not matching.

If is selected next, then would be mismatched in the 7 th symbol (in LHS

and in RHS). If is selected, instead, there will not be any choice to match the

both side in the next step.
• Example3 : The list 1,3,2,3 is a solution to the following PCP instance.

i xi yi

1 1 101

2 10 00

3 011 11

• The following properties can easily be proved.
• Proposition The Post Correspondence System
• Intractable problems

• From a computational complexity stance, intractable problems are problems for which

there exist no efficient algorithms to solve them.

• Most intractable problems have an algorithm – the same algorithm – that provides a

solution, and that algorithm is the brute-force search.

•

• This algorithm, however, does not provide an efficient solution and is, therefore, not

feasible for computation with anything more than the smallest input.

• The reason there is no efficient algorithms for these problems is that these problems are

all in a category which I like to refer to as “slightly less than random.” They are so close

to random, in fact, that they do not as yet allow for any meaningful algorithm other than

that of brute-force.

• If any problem were truly random, there would not be even the possibility of any such

algorithm.

• EXAMPLE #1: Factoring a number into primes.

•

• It is the security provided by the lack of any efficient algorithm to solve this problem that

allows RSA and public key encryption to be so widely accepted and successful.

•

•

• EXAMPLE #2: SAT, the satisfiability problem to test whether a given Boolean

• formula is satisfiable.

•

• All sets of input must be tried systematically (brute-force) until a satisfying case is

discovered.

• EXAMPLE #3: Integer partition: Can you partition n integers into two subsets

such

• that the sums of the subsets are equal?

•

• As the size of the integers (i.e. the size of n) grows linearly, the size of the computations

required to check all subsets and their respective sums grows exponentially. This is

because, once again, we are forced to use the brute-force method to test the subsets of

each division and their sums.

•

• EXAMPLE #4: Graph coloring: How many colors do you need to color a graph

• such that no two adjacent vertices are of the same color?

• Given any graph with a large number of vertices, we see that we are again faced with

resorting to a systematic tracing of all paths, comparison of neighboring colors,

backtracking, etc., resulting in exponential time complexity once again.

•

• EXAMPLE #5: Bin packing: How many bins of a given size do you need to hold n

• items of variable size?

•

• Again, the best algorithm for this problem involves going through all subsets of n items,

seeing how they fit into the bins, and backtracking to test for better fits among subsets

until all possibles subsets have been tested to achieve the proper answer. Once again,

brute-force. Once again, exponential.

P versus NP problem

The P versus NP problem is a major unsolved problem in computer science. It asks whether

every problem whose solution can be quickly verified (technically, verified in polynomial time)

can also be solved quickly (again, in polynomial time).

The underlying issues were first discussed in the 1950s, in letters from John Forbes Nash Jr. to

the National Security Agency, and from Kurt Gödel to John von Neumann. The precise statement

of the P versus NP problem was introduced in 1971 by Stephen Cook in his seminal paper "The

complexity of theorem proving procedures"[2] and is considered by many to be the most

important open problem in the field.[3] It is one of the seven Millennium Prize Problems selected

by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution.

The informal term quickly, used above, means the existence of an algorithm solving the task that

runs in polynomial time, such that the time to complete the task varies as a polynomial function

on the size of the input to the algorithm (as opposed to, say, exponential time). The general class

of questions for which some algorithm can provide an answer in polynomial time is called "class

P" or just "P". For some questions, there is no known way to find an answer quickly, but if one is

provided with information showing what the answer is, it is possible to verify the answer quickly.

The class of questions for which an answer can be verified in polynomial time is called NP,

which stands for "nondeterministic polynomial time".[Note 1]

Consider Sudoku, an example of a problem that is easy to verify, but whose answer may be

difficult to compute. Given a partially filled-in Sudoku grid, of any size, is there at least one legal

solution? A proposed solution is easily verified, and the time to check a solution grows slowly

(polynomially) as the grid gets bigger. However, all known algorithms for finding solutions take,

for difficult examples, time that grows exponentially as the grid gets bigger. So Sudoku is in NP

(quickly checkable) but does not seem to be in P (quickly solvable). Thousands of other problems

seem similar, fast to check but slow to solve. Researchers have shown that a fast solution to any

one of these problems could be used to build a quick solution to all the others, a property called

NP-completeness. Decades of searching have not yielded a fast solution to any of these

problems, so most scientists suspect that none of these problems can be solved quickly. However,

this has never been proven.

https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Stephen_Cook
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-2
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-3
https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/Exponential_time
https://en.wikipedia.org/wiki/P_%28complexity%29
https://en.wikipedia.org/wiki/NP_%28complexity%29
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-4
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Exponential_time
https://en.wikipedia.org/wiki/NP-complete

An answer to the P = NP question would determine whether problems that can be verified in

polynomial time, like Sudoku, can also be solved in polynomial time. If it turned out that P ≠ NP,

it would mean that there are problems in NP that are harder to compute than to verify: they

could not be solved in polynomial time, but the answer could be verified in polynomial time.

Aside from being an important problem in computational theory, a proof either way would have

profound implications for mathematics, cryptography, algorithm research, artificial intelligence,

game theory, multimedia processing, philosophy, economics and many other fields

Context

The relation between the complexity classes P and NP is studied in computational complexity

theory, the part of the theory of computation dealing with the resources required during

computation to solve a given problem. The most common resources are time (how many steps it

takes to solve a problem) and space (how much memory it takes to solve a problem).

In such analysis, a model of the computer for which time must be analyzed is required. Typically

such models assume that the computer is deterministic (given the computer's present state and

any inputs, there is only one possible action that the computer might take) and sequential (it

performs actions one after the other).

In this theory, the class P consists of all those decision problems (defined below) that can be

solved on a deterministic sequential machine in an amount of time that is polynomial in the size

of the input; the class NP consists of all those decision problems whose positive solutions can be

verified in polynomial time given the right information, or equivalently, whose solution can be

found in polynomial time on a non-deterministic machine.[7] Clearly, P ⊆ NP. Arguably the

biggest open question in theoretical computer science concerns the relationship between those

two classes:

Is P equal to NP?

In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is yes,

and 22 were unsure; 8 believed the question may be independent of the currently accepted

axioms and therefore impossible to prove or disprove.[8]

In 2012, 10 years later, the same poll was repeated. The number of researchers who answered

was 151: 126 (83%) believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%)

believed the question may be independent of the currently accepted axioms and therefore

impossible to prove or disprove, 8 (5%) said either don't know or don't care or don't want the

answer to be yes nor the problem to be resolved.[9]

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Philosophy
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Complexity_class
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Deterministic_computation
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/P_versus_NP_problem#Formal_definitions
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/NP_%28complexity%29
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-8
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Independent_%28mathematical_logic%29
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-poll-9
https://en.wikipedia.org/wiki/Independent_%28mathematical_logic%29
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-poll2-10

NP-completeness

Euler diagram for P, NP, NP-complete, and NP-hard set of problems (excluding the empty language and

its complement, which belong to P but are not NP-complete)

Main article: NP-completeness

To attack the P = NP question, the concept of NP-completeness is very useful. NP-complete

problems are a set of problems to each of which any other NP-problem can be reduced in

polynomial time, and whose solution may still be verified in polynomial time. That is, any NP

problem can be transformed into any of the NP-complete problems. Informally, an NP-complete

problem is an NP problem that is at least as "tough" as any other problem in NP.

NP-hard problems are those at least as hard as NP problems, i.e., all NP problems can be reduced

(in polynomial time) to them. NP-hard problems need not be in NP, i.e., they need not have

solutions verifiable in polynomial time.

For instance, the Boolean satisfiability problem is NP-complete by the Cook–Levin theorem, so

any instance of any problem in NP can be transformed mechanically into an instance of the

Boolean satisfiability problem in polynomial time. The Boolean satisfiability problem is one of

many such NP-complete problems. If any NP-complete problem is in P, then it would follow that

P = NP. However, many important problems have been shown to be NP-complete, and no fast

algorithm for any of them is known.

Based on the definition alone it is not obvious that NP-complete problems exist; however, a

trivial and contrived NP-complete problem can be formulated as follows: given a description of a

Turing machine M guaranteed to halt in polynomial time, does there exist a polynomial-size

input that M will accept?[10] It is in NP because (given an input) it is simple to check whether M

accepts the input by simulating M; it is NP-complete because the verifier for any particular

instance of a problem in NP can be encoded as a polynomial-time machine M that takes the

solution to be verified as input. Then the question of whether the instance is a yes or no instance

is determined by whether a valid input exists.

The first natural problem proven to be NP-complete was the Boolean satisfiability problem. As

noted above, this is the Cook–Levin theorem; its proof that satisfiability is NP-complete contains

technical details about Turing machines as they relate to the definition of NP. However, after this

https://en.wikipedia.org/wiki/Euler_diagram
https://en.wikipedia.org/wiki/P_%28complexity%29
https://en.wikipedia.org/wiki/NP_%28complexity%29
https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-Scott-11
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem

problem was proved to be NP-complete, proof by reduction provided a simpler way to show that

many other problems are also NP-complete, including the Sudoku discussed earlier. In this case,

the proof shows that a solution of Sudoku in polynomial time, could also be used to complete

Latin squares in polynomial time.[11] This in turn gives a solution to the problem of partitioning

tri-partitite graphs into triangles,[12] which could then be used to find solutions for 3-sat,[13] which

then provides a solution for general boolean satisfiability. So a polynomial time solution to

Sudoku leads, by a series of mechanical transformations, to a polynomial time solution of

satisfiability, which in turn can be used to solve any other NP-complete problem in polynomial

time. Using transformations like this, a vast class of seemingly unrelated problems are all

reducible to one another, and are in a sense "the same problem".

Harder problems
See also: Complexity class

Although it is unknown whether P = NP, problems outside of P are known. A number of succinct

problems (problems that operate not on normal input, but on a computational description of the

input) are known to be EXPTIME-complete. Because it can be shown that P ≠ EXPTIME, these

problems are outside P, and so require more than polynomial time. In fact, by the time hierarchy

theorem, they cannot be solved in significantly less than exponential time. Examples include

finding a perfect strategy for chess (on an N × N board). and some other board games. The

problem of deciding the truth of a statement in Presburger arithmetic requires even more time.

Fischer and Rabin proved in 1974 that every algorithm that decides the truth of Presburger

statements of length n has a runtime of at least for some constant c. Hence, the problem is

known to need more than exponential run time. Even more difficult are the undecidable

problems, such as the halting problem. They cannot be completely solved by any algorithm, in

the sense that for any particular algorithm there is at least one input for which that algorithm will

not produce the right answer; it will either produce the wrong answer, finish without giving a

conclusive answer, or otherwise run forever without producing any answer at all.

It is also possible to consider questions other than decision problems. One such class, consisting

of counting problems, is called #P: whereas an NP problem asks "Are there any solutions?", the

corresponding #P problem asks "How many solutions are there?" Clearly, a #P problem must be

at least as hard as the corresponding NP problem, since a count of solutions immediately tells if

at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that

are believed to be difficult correspond to easy (for example linear-time) P problems.[17] For these

problems, it is very easy to tell whether solutions exist, but thought to be very hard to tell how

many. Many of these problems are #P-complete, and hence among the hardest problems in #P,

since a polynomial time solution to any of them would allow a polynomial time solution to all

other #P problems.

Problems in NP not known to be in P or NP-complete
Main article: NP-intermediate

https://en.wikipedia.org/wiki/Reduction_%28complexity%29
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-12
https://en.wikipedia.org/wiki/Multipartite_graph
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-13
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-14
https://en.wikipedia.org/wiki/Complexity_class
https://en.wikipedia.org/wiki/EXPTIME#EXPTIME-complete
https://en.wikipedia.org/wiki/EXPTIME
https://en.wikipedia.org/wiki/Time_hierarchy_theorem
https://en.wikipedia.org/wiki/Time_hierarchy_theorem
https://en.wikipedia.org/wiki/Presburger_arithmetic
https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Sharp-P#P
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-18
https://en.wikipedia.org/wiki/Sharp-P-complete
https://en.wikipedia.org/wiki/NP-intermediate

It was shown by Ladner that if P ≠ NP then there exist problems in NP that are neither in P nor

NP-complete. Such problems are called NP-intermediate problems. The graph isomorphism

problem, the discrete logarithm problem and the integer factorization problem are examples of

problems believed to be NP-intermediate. They are some of the very few NP problems not

known to be in P or to be NP-complete.

The graph isomorphism problem is the computational problem of determining whether two finite

graphs are isomorphic. An important unsolved problem in complexity theory is whether the

graph isomorphism problem is in P, NP-complete, or NP-intermediate. The answer is not known,

but it is believed that the problem is at least not NP-complete If graph isomorphism is NP-

complete, the polynomial time hierarchy collapses to its second level. Since it is widely believed

that the polynomial hierarchy does not collapse to any finite level, it is believed that graph

isomorphism is not NP-complete. The best algorithm for this problem, due to László Babai and

Eugene Luks, has run time 2O(√n log n) for graphs with n vertices.

The integer factorization problem is the computational problem of determining the prime

factorization of a given integer. Phrased as a decision problem, it is the problem of deciding

whether the input has a factor less than k. No efficient integer factorization algorithm is known,

and this fact forms the basis of several modern cryptographic systems, such as the RSA

algorithm. The integer factorization problem is in NP and in co-NP (and even in UP and co-UP).

If the problem is NP-complete, the polynomial time hierarchy will collapse to its first level (i.e.,

NP = co-NP). The best known algorithm for integer factorization is the general number field

sieve, which takes expected time

to factor an n-bit integer. However, the best known quantum algorithm for this problem, Shor's

algorithm, does run in polynomial time, although this does not indicate where the problem lies

with respect to non-quantum complexity classes.

Does P mean "easy"?

https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Discrete_logarithm_problem
https://en.wikipedia.org/wiki/Integer_factorization_problem
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Graph_%28discrete_mathematics%29
https://en.wikipedia.org/wiki/Graph_isomorphism
https://en.wikipedia.org/wiki/Polynomial_time_hierarchy
https://en.wikipedia.org/wiki/L%C3%A1szl%C3%B3_Babai
https://en.wikipedia.org/wiki/Eugene_Luks
https://en.wikipedia.org/wiki/Integer_factorization_problem
https://en.wikipedia.org/wiki/Prime_factorization
https://en.wikipedia.org/wiki/Prime_factorization
https://en.wikipedia.org/wiki/RSA_%28algorithm%29
https://en.wikipedia.org/wiki/Co-NP
https://en.wikipedia.org/wiki/General_number_field_sieve
https://en.wikipedia.org/wiki/General_number_field_sieve
https://en.wikipedia.org/wiki/Quantum_algorithm
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Shor%27s_algorithm

The graph shows time (average of 100 instances in ms using a 933 MHz Pentium III) vs.problem size for

knapsack problems for a state-of-the-art specialized algorithm. Quadratic fit suggests that empirical

algorithmic complexity for instances with 50–10,000 variables is O((log(n))2.

All of the above discussion has assumed that P means "easy" and "not in P" means "hard", an

assumption known as Cobham's thesis. It is a common and reasonably accurate assumption in

complexity theory; however, it has some caveats.

First, it is not always true in practice. A theoretical polynomial algorithm may have extremely

large constant factors or exponents thus rendering it impractical. On the other hand, even if a

problem is shown to be NP-complete, and even if P ≠ NP, there may still be effective approaches

to tackling the problem in practice. There are algorithms for many NP-complete problems, such

as the knapsack problem, the traveling salesman problem and the Boolean satisfiability problem,

that can solve to optimality many real-world instances in reasonable time. The empirical

average-case complexity (time vs. problem size) of such algorithms can be surprisingly low. An

example is the simplex algorithm in linear programming, which works surprisingly well in

practice; despite having exponential worst-case time complexity it runs on par with the best

known polynomial-time algorithms.[23]

Second, there are types of computations which do not conform to the Turing machine model on

which P and NP are defined, such as quantum computation and randomized algorithms.

Reasons to believe P ≠ NP

According to polls,[8][24] most computer scientists believe that P ≠ NP. A key reason for this

belief is that after decades of studying these problems no one has been able to find a polynomial-

time algorithm for any of more than 3000 important known NP-complete problems (see List of

NP-complete problems). These algorithms were sought long before the concept of NP-

completeness was even defined (Karp's 21 NP-complete problems, among the first found, were

all well-known existing problems at the time they were shown to be NP-complete). Furthermore,

the result P = NP would imply many other startling results that are currently believed to be false,

such as NP = co-NP and P = PH.

It is also intuitively argued that the existence of problems that are hard to solve but for which the

solutions are easy to verify matches real-world experience.]

If P = NP, then the world would be a profoundly different place than we usually assume it to be.

There would be no special value in "creative leaps," no fundamental gap between solving a

problem and recognizing the solution once it's found.

— Scott Aaronson, MIT

On the other hand, some researchers believe that there is overconfidence in believing P ≠ NP and

that researchers should explore proofs of P = NP as well. For example, in 2002 these statements

were made: The main argument in favor of P ≠ NP is the total lack of fundamental progress in

https://en.wikipedia.org/wiki/Cobham%27s_thesis
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Average-case_complexity
https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-24
https://en.wikipedia.org/wiki/Quantum_computation
https://en.wikipedia.org/wiki/Randomized_algorithm
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-poll-9
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-25
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
https://en.wikipedia.org/wiki/Co-NP
https://en.wikipedia.org/wiki/PH_%28complexity%29
https://en.wikipedia.org/wiki/Scott_Aaronson
https://en.wikipedia.org/wiki/MIT

the area of exhaustive search. This is, in my opinion, a very weak argument. The space of

algorithms is very large and we are only at the beginning of its exploration. [...] The resolution of

Fermat's Last Theorem also shows that very simple questions may be settled only by very deep

theories.

— Moshe Y. Vardi, Rice University

Being attached to a speculation is not a good guide to research planning. One should always try

both directions of every problem. Prejudice has caused famous mathematicians to fail to solve

famous problems whose solution was opposite to their expectations, even though they had

developed all the methods required.

— Anil Nerode, Cornell University

Consequences of solution

One of the reasons the problem attracts so much attention is the consequences of the answer.

Either direction of resolution would advance theory enormously, and perhaps have huge practical

consequences as well.

P = NP

A proof that P = NP could have stunning practical consequences if the proof leads to efficient

methods for solving some of the important problems in NP. It is also possible that a proof would

not lead directly to efficient methods, perhaps if the proof is non-constructive, or the size of the

bounding polynomial is too big to be efficient in practice. The consequences, both positive and

negative, arise since various NP-complete problems are fundamental in many fields.

Cryptography, for example, relies on certain problems being difficult. A constructive and

efficient solutionto an NP-complete problem such as 3-SAT would break most existing

cryptosystems including:

• Existing implementations of public-key cryptography, a foundation for many modern security

applications such as secure financial transactions over the Internet.
• Symmetric ciphers such as AES or 3DES, used for the encryption of communications data.

• Cryptographic hashing as the problem of finding a pre-image that hashes to a given values must

be difficult to be useful, and ideally should require exponential time. However, if P=NP, then

finding a pre-image M can be done in polynomial time, through reduction to SAT. These would

need to be modified or replaced by information-theoretically secure solutions not inherently based

on P-NP equivalence.

On the other hand, there are enormous positive consequences that would follow from rendering

tractable many currently mathematically intractable problems. For instance, many problems in

operations research are NP-complete, such as some types of integer programming and the

travelling salesman problem. Efficient solutions to these problems would have enormous

implications for logistics. Many other important problems, such as some problems in protein

https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
https://en.wikipedia.org/wiki/Moshe_Y._Vardi
https://en.wikipedia.org/wiki/Rice_University
https://en.wikipedia.org/wiki/Anil_Nerode
https://en.wikipedia.org/wiki/Cornell_University
https://en.wikipedia.org/wiki/Non-constructive_proof
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#3-satisfiability
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Symmetric_cipher
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Information-theoretic_security
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Integer_programming
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Protein_structure_prediction

structure prediction, are also NP-complete;[30] if these problems were efficiently solvable it could

spur considerable advances in life sciences and biotechnology.

But such changes may pale in significance compared to the revolution an efficient method for

solving NP-complete problems would cause in mathematics itself. Gödel, in his early thoughts

on computational complexity, noted that a mechanical method that could solve any problem

would revolutionize mathematics:[31][32]

If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this would have consequences

of the greatest importance. Namely, it would obviously mean that in spite of the undecidability

of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No

questions could be completely replaced by a machine. After all, one would simply have to

choose the natural number n so large that when the machine does not deliver a result, it makes no

sense to think more about the problem.

Similarly, Stephen Cook says[33]

...it would transform mathematics by allowing a computer to find a formal proof of any theorem

which has a proof of a reasonable length, since formal proofs can easily be recognized in

polynomial time. Example problems may well include all of the CMI prize problems.

Research mathematicians spend their careers trying to prove theorems, and some proofs have

taken decades or even centuries to find after problems have been stated—for instance, Fermat's

Last Theorem took over three centuries to prove. A method that is guaranteed to find proofs to

theorems, should one exist of a "reasonable" size, would essentially end this struggle.

Donald Knuth has stated that he has come to believe that P = NP, but is reserved about the

impact of a possible proof:[34]

[...] I don't believe that the equality P = NP will turn out to be helpful even if it is proved,

because such a proof will almost surely be nonconstructive.

P ≠ NP

A proof that showed that P ≠ NP would lack the practical computational benefits of a proof that

P = NP, but would nevertheless represent a very significant advance in computational complexity

theory and provide guidance for future research. It would allow one to show in a formal way that

many common problems cannot be solved efficiently, so that the attention of researchers can be

focused on partial solutions or solutions to other problems. Due to widespread belief in P ≠ NP,

much of this focusing of research has already taken place.

Also P ≠ NP still leaves open the average-case complexity of hard problems in NP. For example,

it is possible that SAT requires exponential time in the worst case, but that almost all randomly

selected instances of it are efficiently solvable. Russell Impagliazzo has described five

hypothetical "worlds" that could result from different possible resolutions to the average-case

complexity question. These range from "Algorithmica", where P = NP and problems like SAT

https://en.wikipedia.org/wiki/Protein_structure_prediction
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-Berger-32
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-33
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-34
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Stephen_Cook
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-Official_Problem_Description-35
https://en.wikipedia.org/wiki/Clay_Math_Institute#Millennium_Prize_Problems
https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-36
https://en.wikipedia.org/wiki/Average-case_complexity
https://en.wikipedia.org/wiki/Russell_Impagliazzo

can be solved efficiently in all instances, to "Cryptomania", where P ≠ NP and generating hard

instances of problems outside P is easy, with three intermediate possibilities reflecting different

possible distributions of difficulty over instances of NP-hard problems. The "world" where P ≠

NP but all problems in NP are tractable in the average case is called "Heuristica" in the paper. A

Princeton University workshop in 2009 studied the status of the five worlds.

Results about difficulty of proof

Although the P = NP problem itself remains open despite a million-dollar prize and a huge

amount of dedicated research, efforts to solve the problem have led to several new techniques. In

particular, some of the most fruitful research related to the P = NP problem has been in showing

that existing proof techniques are not powerful enough to answer the question, thus suggesting

that novel technical approaches are required.

As additional evidence for the difficulty of the problem, essentially all known proof techniques

in computational complexity theory fall into one of the following classifications, each of which

is known to be insufficient to prove that P ≠ NP:

Classification Definition

Relativizing

proofs

Imagine a world where every algorithm is allowed to make queries to some fixed

subroutine called an oracle (a black box which can answer a fixed set of questions in

constant time. For example, a black box that solves any given travelling salesman problem

in 1 step), and the running time of the oracle is not counted against the running time of the

algorithm. Most proofs (especially classical ones) apply uniformly in a world with oracles

regardless of what the oracle does. These proofs are called relativizing. In 1975, Baker,

Gill, and Solovay showed that P = NP with respect to some oracles, while P ≠ NP for

other oracles.[38] Since relativizing proofs can only prove statements that are uniformly

true with respect to all possible oracles, this showed that relativizing techniques cannot

resolve P = NP.

In 1993, Alexander Razborov and Steven Rudich defined a general class of proof

techniques for circuit complexity lower bounds, called natural proofs.[39] At the time all

previously known circuit lower bounds were natural, and circuit complexity was

considered a very promising approach for resolving P = NP. However, Razborov and

Natural proofs Rudich showed that, if one-way functions exist, then no natural proof method can

distinguish between P and NP. Although one-way functions have never been formally

proven to exist, most mathematicians believe that they do, and a proof of their existence

would be a much stronger statement than P ≠ NP. Thus it is unlikely that natural proofs

alone can resolve P = NP.

Algebrizing

proofs

After the Baker-Gill-Solovay result, new non-relativizing proof techniques were

successfully used to prove that IP = PSPACE. However, in 2008, Scott Aaronson and Avi

Wigderson showed that the main technical tool used in the IP = PSPACE proof, known as

https://en.wikipedia.org/wiki/Princeton_University
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/w/index.php?title=Relativizing_proof&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Relativizing_proof&action=edit&redlink=1
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/Robert_M._Solovay
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-40
https://en.wikipedia.org/wiki/Alexander_Razborov
https://en.wikipedia.org/wiki/Steven_Rudich
https://en.wikipedia.org/wiki/Natural_proof
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-41
https://en.wikipedia.org/wiki/Natural_proof
https://en.wikipedia.org/wiki/One-way_functions
https://en.wikipedia.org/wiki/IP_%28complexity%29
https://en.wikipedia.org/wiki/PSPACE
https://en.wikipedia.org/wiki/Scott_Aaronson
https://en.wikipedia.org/wiki/Avi_Wigderson
https://en.wikipedia.org/wiki/Avi_Wigderson

arithmetization, was also insufficient to resolve P = NP.[40]

These barriers are another reason why NP-complete problems are useful: if a polynomial-time

algorithm can be demonstrated for an NP-complete problem, this would solve the P = NP

problem in a way not excluded by the above results.

These barriers have also led some computer scientists to suggest that the P versus NP problem

may be independent of standard axiom systems like ZFC (cannot be proved or disproved within

them). The interpretation of an independence result could be that either no polynomial-time

algorithm exists for any NP-complete problem, and such a proof cannot be constructed in (e.g.)

ZFC, or that polynomial-time algorithms for NP-complete problems may exist, but it is

impossible to prove in ZFC that such algorithms are correct. However, if it can be shown, using

techniques of the sort that are currently known to be applicable, that the problem cannot be

decided even with much weaker assumptions extending the Peano axioms (PA) for integer

arithmetic, then there would necessarily exist nearly-polynomial-time algorithms for every

problem in NP. Therefore, if one believes (as most complexity theorists do) that not all problems

in NP have efficient algorithms, it would follow that proofs of independence using those

techniques cannot be possible. Additionally, this result implies that proving independence from

PA or ZFC using currently known techniques is no easier than proving the existence of efficient

algorithms for all problems in NP.

Claimed solutions

While the P versus NP problem is generally considered unsolved, many amateur and some

professional researchers have claimed solutions. Gerhard J. Woeginger has a comprehensive list.

As of 2018, this list contained 62 purported proofs of P = NP, 50 of P ≠ NP, 2 proofs the problem

is unprovable, and one proof that it is undecidable. An August 2010 claim of proof that P ≠ NP,

by Vinay Deolalikar, a researcher at HP Labs, received heavy Internet and press attention after

being initially described as "seem[ing] to be a relatively serious attempt" by two leading

specialists. The proof has been reviewed publicly by academics, and Neil Immerman, an expert

in the field, has pointed out two possibly fatal errors in the proof. In September 2010, Deolalikar

was reported to be working on a detailed expansion of his attempted proof. However, opinions

expressed by several notable theoretical computer scientists indicate that the attempted proof is

neither correct nor a significant advancement in the understanding of the problem. This

assessment prompted a May 2013 The New Yorker article to call the proof attempt "thoroughly

discredited".

Logical characterizations

The P = NP problem can be restated in terms of expressible certain classes of logical statements,

as a result of work in descriptive complexity.

https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-42
https://en.wikipedia.org/wiki/Independence_%28mathematical_logic%29
https://en.wikipedia.org/wiki/ZFC
https://en.wikipedia.org/wiki/Peano_axioms
https://en.wikipedia.org/wiki/Gerhard_J._Woeginger
https://en.wikipedia.org/wiki/HP_Labs
https://en.wikipedia.org/wiki/Neil_Immerman
https://en.wikipedia.org/wiki/The_New_Yorker
https://en.wikipedia.org/wiki/Descriptive_complexity

Consider all languages of finite structures with a fixed signature including a linear order relation.

Then, all such languages in P can be expressed in first-order logic with the addition of a suitable

least fixed-point combinator. Effectively, this, in combination with the order, allows the

definition of recursive functions. As long as the signature contains at least one predicate or

function in addition to the distinguished order relation, so that the amount of space taken to store

such finite structures is actually polynomial in the number of elements in the structure, this

precisely characterizes P.

Similarly, NP is the set of languages expressible in existential second-order logic—that is,

second-order logic restricted to exclude universal quantification over relations, functions, and

subsets. The languages in the polynomial hierarchy, PH, correspond to all of second-order logic.

Thus, the question "is P a proper subset of NP" can be reformulated as "is existential second-

order logic able to describe languages (of finite linearly ordered structures with nontrivial

signature) that first-order logic with least fixed point cannot?".[52] The word "existential" can

even be dropped from the previous characterization, since P = NP if and only if P = PH (as the

former would establish that NP = co-NP, which in turn implies that NP = PH).

Polynomial-time algorithms

No algorithm for any NP-complete problem is known to run in polynomial time. However, there

are algorithms known for NP-complete problems with the property that if P = NP, then the

algorithm runs in polynomial time on accepting instances (although with enormous constants,

making the algorithm impractical). However, these algorithms do not qualify as polynomial time

because their running time on rejecting instances are not polynomial. The following algorithm,

due to Levin (without any citation), is such an example below. It correctly accepts the NP-

complete language SUBSET-SUM. It runs in polynomial time on inputs that are in SUBSET-

SUM if and only if P = NP:

// Algorithm that accepts the NP-complete language SUBSET-SUM.

//

// this is a polynomial-time algorithm if and only if P = NP.

//

// "Polynomial-time" means it returns "yes" in polynomial time when

// the answer should be "yes", and runs forever when it is "no".

//
// Input: S = a finite set of integers

// Output: "yes" if any subset of S adds up to 0.

// Runs forever with no output otherwise.

// Note: "Program number P" is the program obtained by

// writing the integer P in binary, then
// considering that string of bits to be a

// program. Every possible program can be

// generated this way, though most do nothing

// because of syntax errors.

FOR N = 1...∞

FOR P = 1...N

Run program number P for N steps with input S

IF the program outputs a list of distinct integers

AND the integers are all in S

https://en.wikipedia.org/wiki/Signature_%28logic%29
https://en.wikipedia.org/wiki/Linear_order
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Fixed-point_combinator
https://en.wikipedia.org/wiki/Second-order_logic
https://en.wikipedia.org/wiki/Universal_quantification
https://en.wikipedia.org/wiki/Polynomial_hierarchy
https://en.wikipedia.org/wiki/PH_%28complexity%29
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-54
https://en.wikipedia.org/wiki/Leonid_Levin
https://en.wikipedia.org/wiki/Subset_sum_problem

AND the integers sum to 0

THEN
OUTPUT "yes" and HALT

If, and only if, P = NP, then this is a polynomial-time algorithm accepting an NP-complete

language. "Accepting" means it gives "yes" answers in polynomial time, but is allowed to run

forever when the answer is "no" (also known as a semi-algorithm).

This algorithm is enormously impractical, even if P = NP. If the shortest program that can solve

SUBSET-SUM in polynomial time is b bits long, the above algorithm will try at least 2b−1 other

programs first.

Formal definitions

P and NP

Conceptually speaking, a decision problem is a problem that takes as input some string w over an

alphabet Σ, and outputs "yes" or "no". If there is an algorithm (say a Turing machine, or a

computer program with unbounded memory) that can produce the correct answer for any input

string of length n in at most cnk steps, where k and c are constants independent of the input

string, then we say that the problem can be solved in polynomial time and we place it in the class

P. Formally, P is defined as the set of all languages that can be decided by a deterministic

polynomial-time Turing machine. That is,

where

and a deterministic polynomial-time Turing machine is a deterministic Turing machine M that

satisfies the following two conditions:

1. M halts on all input w and

2. there exists such that , where O refers to the big O notation and

NP can be defined similarly using nondeterministic Turing machines (the traditional way).

However, a modern approach to define NP is to use the concept of certificate and verifier.

Formally, NP is defined as the set of languages over a finite alphabet that have a verifier that

runs in polynomial time, where the notion of "verifier" is defined as follows.

Let L be a language over a finite alphabet, Σ.

L ∈ NP if, and only if, there exists a binary relation and a positive integer k such that the

following two conditions are satisfied:

1. For all , such that (x, y) ∈ R and ; and

2. the language over is decidable by a deterministic Turing machine in polynomial time.

https://en.wikipedia.org/wiki/String_%28computer_science%29
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Big_O_notation#Formal_definition
https://en.wikipedia.org/wiki/Certificate_%28complexity%29

A Turing machine that decides LR is called a verifier for L and a y such that (x, y) ∈ R is called a

certificate of membership of x in L.

In general, a verifier does not have to be polynomial-time. However, for L to be in NP, there

must be a verifier that runs in polynomial time.

Example

Let

Clearly, the question of whether a given x is a composite is equivalent to the question of whether

x is a member of COMPOSITE. It can be shown that COMPOSITE ∈ NP by verifying that it

satisfies the above definition (if we identify natural numbers with their binary representations).

COMPOSITE also happens to be in P.[53][54]

NP-completeness

Main article: NP-completeness

There are many equivalent ways of describing NP-completeness.

Let L be a language over a finite alphabet Σ.

L is NP-complete if, and only if, the following two conditions are satisfied:

1. L ∈ NP; and

2. any L′ in NP is polynomial-time-reducible to L (written as), where if, and only if, the

following two conditions are satisfied:

1. There exists f : Σ* → Σ* such that for all w in Σ* we have: ; and

2. there exists a polynomial-time Turing machine that halts with f(w) on its tape on any

input w.

Alternatively, if L ∈ NP, and there is another NP-complete problem that can be polynomial-time

reduced to L, then L is NP-complete. This is a common way of proving some new problem is

NP-complete.

In computational complexity theory, an NP-complete decision problem is one belonging to both

the NP and the NP-hard complexity classes. In this context, NP stands for "nondeterministic

polynomial time". The set of NP-complete problems is often denoted by NP-C or NPC.

Although any given solution to an NP-complete problem can be verified quickly (in polynomial

time), there is no known efficient way to locate a solution in the first place; the most notable

characteristic of NP-complete problems is that no fast solution to them is known. That is, the

time required to solve the problem using any currently known algorithm increases very quickly

https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-Agrawal-55
https://en.wikipedia.org/wiki/P_versus_NP_problem#cite_note-56
https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/NP_%28complexity%29
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine#Deterministic_Turing_Machine
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/Algorithm

as the size of the problem grows. As a consequence, determining whether it is possible to solve

these problems quickly, called the P versus NP problem, is one of the principal unsolved

problems in computer science today.

While a method for computing the solutions to NP-complete problems using a reasonable

amount of time remains undiscovered, computer scientists and programmers still frequently

encounter NP-complete problems. NP-complete problems are often addressed by using heuristic

methods and approximation algorithms.

Overview

NP-complete problems are in NP, the set of all decision problems whose solutions can be

verified in polynomial time; NP may be equivalently defined as the set of decision problems that

can be solved in polynomial time on a non-deterministic Turing machine. A problem p in NP is

NP-complete if every other problem in NP can be transformed (or reduced) into p in polynomial

time.

NP-complete problems are studied because the ability to quickly verify solutions to a problem

(NP) seems to correlate with the ability to quickly solve that problem (P). It is not known

whether every problem in NP can be quickly solved—this is called the P versus NP problem. But

if any NP-complete problem can be solved quickly, then every problem in NP can, because the

definition of an NP-complete problem states that every problem in NP must be quickly reducible

to every NP-complete problem (that is, it can be reduced in polynomial time). Because of this, it

is often said that NP-complete problems are harder or more difficult than NP problems in

general.

Formal definition
See also: formal definition for NP-completeness (article P = NP)

A decision problem is NP-complete if:

1. is in NP, and

2. Every problem in NP is reducible to in polynomial time.[1]

can be shown to be in NP by demonstrating that a candidate solution to can be verified

in polynomial time.

Note that a problem satisfying condition 2 is said to be NP-hard, whether or not it satisfies

condition 1.[2]

https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/List_of_open_problems_in_computer_science
https://en.wikipedia.org/wiki/List_of_open_problems_in_computer_science
https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Computer_programmer
https://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
https://en.wikipedia.org/wiki/Approximation_algorithm
https://en.wikipedia.org/wiki/NP_%28complexity%29
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
https://en.wikipedia.org/wiki/P_%28complexity%29
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/P_%3D_NP_problem#NP-completeness
https://en.wikipedia.org/wiki/Many-one_reduction
https://en.wikipedia.org/wiki/NP-completeness#cite_note-1
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/NP-completeness#cite_note-2

A consequence of this definition is that if we had a polynomial time algorithm (on a UTM, or

any other Turing-equivalent abstract machine) for , we could solve all problems in NP in

polynomial time.

Background

The concept of NP-completeness was introduced in 1971 (see Cook–Levin theorem), though the

term NP-complete was introduced later. At 1971 STOC conference, there was a fierce debate

among the computer scientists about whether NP-complete problems could be solved in

polynomial time on a deterministic Turing machine. John Hopcroft brought everyone at the

conference to a consensus that the question of whether NP-complete problems are solvable in

polynomial time should be put off to be solved at some later date, since nobody had any formal

proofs for their claims one way or the other. This is known as the question of whether P=NP.

Nobody has yet been able to determine conclusively whether NP-complete problems are in fact

solvable in polynomial time, making this one of the great unsolved problems of mathematics.

The Clay Mathematics Institute is offering a US $1 million reward to anyone who has a formal

proof that P=NP or that P≠NP.

The Cook–Levin theorem states that the Boolean satisfiability problem is NP-complete (a

simpler, but still highly technical proof of this is available). In 1972, Richard Karp proved that

several other problems were also NP-complete (see Karp's 21 NP-complete problems); thus there

is a class of NP-complete problems (besides the Boolean satisfiability problem). Since the

original results, thousands of other problems have been shown to be NP-complete by reductions

from other problems previously shown to be NP-complete; many of these problems are collected

in Garey and Johnson's 1979 book Computers and Intractability: A Guide to the Theory of NP-

Completeness.[3] For more details refer to Introduction to the Design and Analysis of Algorithms

by Anany Levitin.

NP-complete problems

https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/STOC
https://en.wikipedia.org/wiki/Deterministic
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/John_Hopcroft
https://en.wikipedia.org/wiki/Unsolved_problems_of_mathematics
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Proof_that_Boolean_satisfiability_problem_is_NP-complete
https://en.wikipedia.org/wiki/Richard_Karp
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
https://en.wikipedia.org/wiki/NP-completeness#cite_note-GareyJohnson-3

Some NP-complete problems, indicating the reductions typically used to prove their NP-completeness

Main article: List of NP-complete problems

An interesting example is the graph isomorphism problem, the graph theory problem of

determining whether a graph isomorphism exists between two graphs. Two graphs are

isomorphic if one can be transformed into the other simply by renaming vertices. Consider these

two problems:

• Graph Isomorphism: Is graph G1 isomorphic to graph G2?
• Subgraph Isomorphism: Is graph G1 isomorphic to a subgraph of graph G2?

The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is

suspected to be neither in P nor NP-complete, though it is in NP. This is an example of a

problem that is thought to be hard, but is not thought to be NP-complete.

The easiest way to prove that some new problem is NP-complete is first to prove that it is in NP,

and then to reduce some known NP-complete problem to it. Therefore, it is useful to know a

variety of NP-complete problems. The list below contains some well-known problems that are

NP-complete when expressed as decision problems.

To the right is a diagram of some of the problems and the reductions typically used to prove their

NP-completeness. In this diagram, an arrow from one problem to another indicates the direction

of the reduction. Note that this diagram is misleading as a description of the mathematical

relationship between these problems, as there exists a polynomial-time reduction between any

two NP-complete problems; but it indicates where demonstrating this polynomial-time reduction

has been easiest.

There is often only a small difference between a problem in P and an NP-complete problem. For

example, the 3-satisfiability problem, a restriction of the boolean satisfiability problem, remains

NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically,

NL-complete), and the slightly more general max. 2-sat. problem is again NP-complete.

Determining whether a graph can be colored with 2 colors is in P, but with 3 colors is NP-

complete, even when restricted to planar graphs. Determining if a graph is a cycle or is bipartite

is very easy (in L), but finding a maximum bipartite or a maximum cycle subgraph is NP-

complete. A solution of the knapsack problem within any fixed percentage of the optimal

solution can be computed in polynomial time, but finding the optimal solution is NP-complete.

Solving NP-complete problems

At present, all known algorithms for NP-complete problems require time that is superpolynomial

in the input size, and it is unknown whether there are any faster algorithms.

The following techniques can be applied to solve computational problems in general, and they

often give rise to substantially faster algorithms:

https://en.wikipedia.org/wiki/Reduction_%28complexity%29
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_isomorphism
https://en.wikipedia.org/wiki/Isomorphic
https://en.wikipedia.org/wiki/Isomorphism
https://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
https://en.wikipedia.org/wiki/Reduction_%28complexity%29
https://en.wikipedia.org/wiki/Polynomial-time_reduction
https://en.wikipedia.org/wiki/3-satisfiability
https://en.wikipedia.org/wiki/2-satisfiability
https://en.wikipedia.org/wiki/NL-complete
https://en.wikipedia.org/wiki/Planar_graph
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Bipartite_graph
https://en.wikipedia.org/wiki/L_%28complexity%29
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Superpolynomial

• Approximation: Instead of searching for an optimal solution, search for a solution that is at most a

factor from an optimal one.
• Randomization: Use randomness to get a faster average running time, and allow the algorithm to

fail with some small probability. Note: The Monte Carlo method is not an example of an efficient

algorithm in this specific sense, although evolutionary approaches like Genetic algorithms may

be.
• Restriction: By restricting the structure of the input (e.g., to planar graphs), faster algorithms are

usually possible.
• Parameterization: Often there are fast algorithms if certain parameters of the input are fixed.
• Heuristic: An algorithm that works "reasonably well" in many cases, but for which there is no

proof that it is both always fast and always produces a good result. Metaheuristic approaches are

often used.

One example of a heuristic algorithm is a suboptimal greedy coloring algorithm used for graph

coloring during the register allocation phase of some compilers, a technique called graph-

coloring global register allocation. Each vertex is a variable, edges are drawn between variables

which are being used at the same time, and colors indicate the register assigned to each variable.

Because most RISC machines have a fairly large number of general-purpose registers, even a

heuristic approach is effective for this application.

Completeness under different types of reduction

In the definition of NP-complete given above, the term reduction was used in the technical

meaning of a polynomial-time many-one reduction.

Another type of reduction is polynomial-time Turing reduction. A problem is polynomial-time

Turing-reducible to a problem if, given a subroutine that solves in polynomial time, one could

write a program that calls this subroutine and solves in polynomial time. This contrasts with

many-one reducibility, which has the restriction that the program can only call the subroutine

once, and the return value of the subroutine must be the return value of the program.

If one defines the analogue to NP-complete with Turing reductions instead of many-one

reductions, the resulting set of problems won't be smaller than NP-complete; it is an open

question whether it will be any larger.

Another type of reduction that is also often used to define NP-completeness is the logarithmic-

space many-one reduction which is a many-one reduction that can be computed with only a

logarithmic amount of space. Since every computation that can be done in logarithmic space can

also be done in polynomial time it follows that if there is a logarithmic-space many-one

reduction then there is also a polynomial-time many-one reduction. This type of reduction is

more refined than the more usual polynomial-time many-one reductions and it allows us to

distinguish more classes such as P-complete. Whether under these types of reductions the

definition of NP-complete changes is still an open problem. All currently known NP-complete

problems are NP-complete under log space reductions. All currently known NP-complete

problems remain NP-complete even under much weaker reductions.[4] It is known, however, that

AC0 reductions define a strictly smaller class than polynomial-time reductions.[5]

https://en.wikipedia.org/wiki/Approximation_algorithm
https://en.wikipedia.org/wiki/Randomized_algorithm
https://en.wikipedia.org/wiki/Running_time
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Parameterized_complexity
https://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Greedy_coloring
https://en.wikipedia.org/wiki/Graph_coloring_problem
https://en.wikipedia.org/wiki/Graph_coloring_problem
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/w/index.php?title=Graph-coloring_global_register_allocation&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Graph-coloring_global_register_allocation&action=edit&redlink=1
https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/Many-one_reduction
https://en.wikipedia.org/wiki/Logarithmic-space_many-one_reduction
https://en.wikipedia.org/wiki/Logarithmic-space_many-one_reduction
https://en.wikipedia.org/wiki/Logarithmic_space
https://en.wikipedia.org/wiki/P-complete
https://en.wikipedia.org/wiki/NP-completeness#cite_note-4
https://en.wikipedia.org/wiki/AC0
https://en.wikipedia.org/wiki/NP-completeness#cite_note-5

Naming

According to Donald Knuth, the name "NP-complete" was popularized by Alfred Aho, John

Hopcroft and Jeffrey Ullman in their celebrated textbook "The Design and Analysis of Computer

Algorithms". He reports that they introduced the change in the galley proofs for the book (from

"polynomially-complete"), in accordance with the results of a poll he had conducted of the

theoretical computer science community.[6] Other suggestions made in the poll[7] included

"Herculean", "formidable", Steiglitz's "hard-boiled" in honor of Cook, and Shen Lin's acronym

"PET", which stood for "probably exponential time", but depending on which way the P versus

NP problem went, could stand for "provably exponential time" or "previously exponential

time".[8]

Common misconceptions

The following misconceptions are frequent.

"NP-complete problems are the most difficult known problems." Since NP-complete problems

are in NP, their running time is at most exponential. However, some problems provably require

more time, for example Presburger arithmetic.

• "NP-complete problems are difficult because there are so many different solutions." On

the one hand, there are many problems that have a solution space just as large, but can be

solved in polynomial time (for example minimum spanning tree). On the other hand,

there are NP-problems with at most one solution that are NP-hard under randomized

polynomial-time reduction (see Valiant–Vazirani theorem).
• "Solving NP-complete problems requires exponential time." First, this would imply P ≠

NP, which is still an unsolved question. Further, some NP-complete problems actually

have algorithms running in super polynomial, but sub exponential time such as O(2√nn).

For example, the independent set and dominating set problems are NP-complete when

restricted to planar graphs, but can be solved in sub exponential time on planar graphs

using the planar separator theorem.[10]
• "All instances of an NP-complete problem are difficult." Often some instances, or even

most instances, may be easy to solve within polynomial time. However, unless P=NP,

any polynomial-time algorithm must asymptotically be wrong on more than polynomial

many of the exponentially many inputs of a certain size.[11]
• "If P=NP, all cryptographic ciphers can be broken." A polynomial-time problem can be

very difficult to solve in practice if the polynomial's degree or constants are large enough.

For example, ciphers with a fixed key length, such as Advanced Encryption Standard, can

all be broken in constant time (and are thus already in P), though with current technology

that constant may exceed the age of the universe.

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Alfred_Aho
https://en.wikipedia.org/wiki/John_Hopcroft
https://en.wikipedia.org/wiki/John_Hopcroft
https://en.wikipedia.org/wiki/Jeffrey_Ullman
https://en.wikipedia.org/wiki/Galley_proofs
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/NP-completeness#cite_note-6
https://en.wikipedia.org/wiki/NP-completeness#cite_note-7
https://en.wikipedia.org/wiki/Labours_of_Hercules
https://en.wikipedia.org/wiki/Kenneth_Steiglitz
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/NP-completeness#cite_note-8
https://en.wikipedia.org/wiki/Presburger_arithmetic
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Valiant%E2%80%93Vazirani_theorem
https://en.wikipedia.org/wiki/Independent_set_problem
https://en.wikipedia.org/wiki/Dominating_set_problem
https://en.wikipedia.org/wiki/Planar_graph
https://en.wikipedia.org/wiki/Planar_graph
https://en.wikipedia.org/wiki/Planar_separator_theorem
https://en.wikipedia.org/wiki/NP-completeness#cite_note-10
https://en.wikipedia.org/wiki/NP-completeness#cite_note-11
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

	MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND SCIENCE
	On
	III Year B.Tech. CSE/IT I-Sem (Jntuh-R18)
	Automata – What is it?
	Automata & Complexity
	The Central Concepts Of Automata Theory- Alphabets , Strings , Languages, Problems
	An Application - Text Search

	Eliminating ε Transitions
	Example:

	Conversion from NFA to DFA
	Steps for converting NFA to DFA:
	Example 1:

	Conversion from NFA with ε to DFA
	Steps for converting NFA with ε to DFA:
	Example 1:
	Example 2:

	Moore Machine
	Example 1:
	Example 2:

	Mealy Machine
	Conversion from Mealy machine to Moore Machine
	Example 1:
	Example 2:

	Conversion from Moore machine to Mealy Machine
	Method for conversion of Moore machine to Mealy machine
	Example 1:
	Example 2:
	MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND SCIENCE
	On
	III Year B.Tech. CSE/IT I-Sem (Jntuh-R18)

	Pumping Lemma for Regular Languages:
	Closure Properties of Regular Languages:
	On
	III Year B.Tech. CSE/IT I-Sem (Jntuh-R18)

	Left and Right Recursive Grammars
	Context-Free Grammars
	Formal definitions
	Examples
	Introductory example
	Constituency-based parse trees
	Dependency-based parse trees
	Problem
	Solution
	Informal description
	Formal definition
	Example
	Understanding the computation process
	Algorithm to find PDA corresponding to a given CFG
	Algorithm to find CFG corresponding to a given PDA
	Design of Top-Down Parser
	Design of a Bottom-Up Parser
	Formal definition
	Languages recognized
	MALL REDDY INSTITUTE OF TECHNOLOGY & SCIENCE AND SCIENCE
	On
	III Year B.Tech. CSE/IT I-Sem (Jntuh-R18)

	Chomsky Normal Form
	Greibach Normal Form
	Formal statement
	Informal statement and explanation
	Usage of the lemma
	The Closure of Context-Free Languages
	Is a given string in a CFL?
	Is a CFL empty?
	These are not decision properties for CFLs
	Substitution
	Closure Under Union
	Other Closure Properties
	Algorithm to Convert into Chomsky Normal Form −
	Definition
	Time and Space Complexity of a Turing Machine
	Programming Techniques for Turing Machines 329
	Extensions to the Basic Turing Machine 336
	Example 1
	Example 2
	Overview
	Informal description
	Formal definition
	Additional details required to visualize or implement Turing machines
	Models equivalent to the Turing machine model
	Choice c-machines, oracle o-machines
	Universal Turing machines
	Comparison with real machines
	On
	III Year B.Tech. CSE/IT I-Sem (Jntuh-R18)

	Undecidable problem
	Background
	Example: the halting problem in computability theory

	Non-Recursively Enumerable Languages
	When Recursively Enumerable Implies Recursive
	Recursively Enumerable But Not Recursive
	Example

	P versus NP problem
	Context
	NP-completeness
	Harder problems
	Problems in NP not known to be in P or NP-complete
	Does P mean "easy"?
	Reasons to believe P ≠ NP
	Consequences of solution
	Results about difficulty of proof
	Claimed solutions
	Logical characterizations
	Polynomial-time algorithms
	Formal definitions
	Overview
	Formal definition
	Background
	NP-complete problems
	Solving NP-complete problems
	Completeness under different types of reduction
	Naming
	Common misconceptions

